Advertisement

Optics and Spectroscopy

, Volume 111, Issue 5, pp 786–797 | Cite as

Nonlinear light absorption on the surface of a transparent wide-gap crystal: I. Direct interband transitions

  • A. V. Ivanov
Condensed-Matter Spectroscopy
  • 69 Downloads

Abstract

For a semi-infinite wide-gap crystal, expressions for the rates of one- and two-photon transitions caused by the action of linearly polarized light are obtained in the basis set of model surface and bulk functions. The transition probability is shown to significantly depend on the angle between the light polarization vector and the normal to the surface Ψ. At a light intensity of 10 MW/cm2, the probability of one-photon transitions between surface states is in the range 1024−1026 s−1 cm−2 (ψ = π/2 and ψ = 0, respectively). It is shown that, in the case wherein the light polarization vector is perpendicular to the surface, the rates of allowed n-photon transitions (n = 1, 2) decrease more slowly with increasing n than in the case in which the polarization vector lies in the plane of the surface.

Keywords

Ultrashort Laser Pulse Bulk State Bulk Region Optical Breakdown Photon Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).CrossRefADSGoogle Scholar
  2. 2.
    A. Marcinkevicius, S. Juodkazis, M. Watanabe, et al., Opt. Lett. 26, 277 (2001).CrossRefADSGoogle Scholar
  3. 3.
    K. Ke, A. P. Joglekar, H. Liu, et al., in Proceedings of the Conference on Laser and Electro-Optics (CLEO 2005) (Baltimore, 2005), paper CThV3.Google Scholar
  4. 4.
    B. S. Sharma and K. E. Riekhof, Can. J. Phys. 45, 3781 (1967).CrossRefADSGoogle Scholar
  5. 5.
    D. W. Fradin and M. Bass, Appl. Phys. Lett. 22, 157 (1973).CrossRefADSGoogle Scholar
  6. 6.
    A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, Zh. Eksp. Teor. Fiz. 70(3), 728 (1976).Google Scholar
  7. 7.
    B. C. Stuart, D. Feit, S. Herman, et al., Phys. Rev. B 53,1749 (1996).CrossRefADSGoogle Scholar
  8. 8.
    M. Lenzner, J. Kruger, S. Sartania, et al., Phys. Rev. Lett. 80, 4076 (1998).CrossRefADSGoogle Scholar
  9. 9.
    A. C. Tien, S. Backus, H. Kapteyn, et al., Phys. Rev. Lett. 82, 3883 (1999).CrossRefADSGoogle Scholar
  10. 10.
    F. Quere, S. Guizard, and Ph. Martin, Europhys. Lett. 56, 138 (2001).CrossRefADSGoogle Scholar
  11. 11.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, A. V. Ovchinnikov, P. S. Kondratenko, D. S. Sitnikov, and V. E. Fortov, JETP Lett. 83(11), 501 (2006).CrossRefGoogle Scholar
  12. 12.
    S. W. Winkler, I. M. Burakov, R. Stoian, et al., Appl. Phys. A 84, 413 (2006).CrossRefADSGoogle Scholar
  13. 13.
    A. V. Smith and B. T. Do, Appl. Opt. 47(26), 4812 (2008).CrossRefADSGoogle Scholar
  14. 14.
    A. G. Molchanov, Fiz. Tverd. Tela 12, 954 (1970).Google Scholar
  15. 15.
    E. Yablonovitch and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).CrossRefADSGoogle Scholar
  16. 16.
    A. S. Epifanov, Zh. Eksp. Teor. Fiz. 67, 1805 (1974).Google Scholar
  17. 17.
    L. H. Holway and D. W. Fradin, J. Appl. Phys. 46, 279 (1975).CrossRefADSGoogle Scholar
  18. 18.
    A. Schmid, P. Kelly, and P. Braunlich, Phys. Rev. B 16(10), 4569 (1977).CrossRefADSGoogle Scholar
  19. 19.
    S. C. Jones, X. A. Shen, R. F. Braunlich, et al., Phys. Rev. B 35, 894 (1987).CrossRefADSGoogle Scholar
  20. 20.
    S. C. Jones, P. Braunlich, R. T. Casper, et al., Opt. Eng. 28(10), 1039 (1989).ADSGoogle Scholar
  21. 21.
    E. Cartier, D. Arnold, D. J. Dimaria, et al., Rev. Solid State Sci. 5, 531 (1991).Google Scholar
  22. 22.
    A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, Phys. Rev. B 61, 11437 (2000).CrossRefADSGoogle Scholar
  23. 23.
    T. Apostolova and Y. Hahn, J. Appl. Phys. 88, 1024 (2000).CrossRefADSGoogle Scholar
  24. 24.
    A. Q. Wu, I. H. Chowdhury, and X. Xu, Phys. Rev. B 72, 085128 (2005).CrossRefADSGoogle Scholar
  25. 25.
    T. Otobe, M. Yamagiwa, J.-I. Iwata, et al., Phys. Rev. B 77, 165104 (2008).CrossRefADSGoogle Scholar
  26. 26.
    P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner, Phys. Rev. Lett. 102, 083001 (2009).CrossRefADSGoogle Scholar
  27. 27.
    A. V. Ivanov, R. S. Levitskii, and E. Yu. Perlin, Opt. Spectrosc. 107(2), 255 (2009).CrossRefADSGoogle Scholar
  28. 28.
    E. Yu. Perlin, A. V. Fedorov, and M. B. Kashevnik, Zh. Eksp. Teor. Fiz. 85 (1983).Google Scholar
  29. 29.
    A. M. Danishevskii, E. Yu. Perlin, and A. V. Fedorov, Zh. Eksp. Teor. Fiz. 93, 1319 (1987).Google Scholar
  30. 30.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spectrosc. 100(1), 49 (2006).CrossRefADSGoogle Scholar
  31. 31.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, JETP 101(2), 357 (2005).CrossRefADSGoogle Scholar
  32. 32.
    G. Kern, J. Hafner, J. Furthmuller, and G. Kresse, Surf. Sci. 357–358, 422 (1996).CrossRefGoogle Scholar
  33. 33.
    A. A. Stekolnikov, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 65, 115318 (2002).CrossRefADSGoogle Scholar
  34. 34.
    V. M. Bermudez, Surf. Sci. 579, 11 (2005).CrossRefADSGoogle Scholar
  35. 35.
    M. Marsili, O. Pulci, F. Bechstedt, and R. Del Sole, Phys. Rev. B 72, 115415 (2005).CrossRefADSGoogle Scholar
  36. 36.
    M. Marsili, O. Pulci, F. Bechstedt, and R. Del Sole, Phys. Rev. B 78, 205414 (2008).CrossRefADSGoogle Scholar
  37. 37.
    C. Noguez and S. E. Ulloa, Phys. Rev. B 53(19), 13138 (1996).CrossRefADSGoogle Scholar
  38. 38.
    F. Bechstedt, A. A. Stekolnikov, J. Furthmuller, and P. Kackell, Phys. Rev. Lett. 87(1), 016103 (2001).CrossRefADSGoogle Scholar
  39. 39.
    H. Sano, G. Mizutani, W. Wolf, and R. Podloucky, Phys. Rev. B 66, 195338 (2002).CrossRefADSGoogle Scholar
  40. 40.
    A. Zeiser, N. Bucking, J. Forstner, and A. Knorr, Phys. Rev. B 71, 245309 (2005).CrossRefADSGoogle Scholar
  41. 41.
    T. Bechshtedt and R. Enderlein, Semiconductor Surfaces and Interfaces: Their Atomic and Electronic Structures (Akademie, Berlin, 1988; Mir, Moscow, 1990).Google Scholar
  42. 42.
    P. Drude, The Theory of Optics (Dover, New York, 1959).Google Scholar
  43. 43.
    J. D. E. McIntyre and D. E. Aspnes, Surf. Sci. 24, 417 (1971).CrossRefADSGoogle Scholar
  44. 44.
    K. Kumagai, G. Mizutani, H. Tsukioka, et al., Phys. Rev. B 48, 14488 (1993).CrossRefADSGoogle Scholar
  45. 45.
    E. I. Tamm, Zh. Eksp. Teor. Fiz. 3, 34 (1933).Google Scholar
  46. 46.
    W. Shockley, Phys. Rev. 56(2), 317 (1939).CrossRefzbMATHADSGoogle Scholar
  47. 47.
    A. A. Gorbatsevich and A. E. Shirokov, Izv. Vyssh. Uchebn. Zaved. Elektron. 5, 7 (2006).Google Scholar
  48. 48.
    H. Sano and G. Mizutani, e-J. Surf. Sci. Nanotech. 1, 57 (2003).CrossRefGoogle Scholar
  49. 49.
    U. Fano, Phys. Rev. 124(6), 1866 (1961).CrossRefzbMATHADSGoogle Scholar
  50. 50.
    P. W. Anderson, Phys. Rev. 124(1), 41 (1961).CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    J. C. Phillips, Phys. Rev. 136, A1714 (1965).CrossRefGoogle Scholar
  52. 52.
    E. Yu. Perlin, Fiz. Tverd. Tela 15, 65 (1973).Google Scholar
  53. 53.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Information and Optical Technologies CenterSt. Petersburg University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations