Optics and Spectroscopy

, 111:51 | Cite as

Light absorption involving longitudinal optical phonons in semiconductor quantum dots

  • A. S. Baimuratov
  • A. V. Baranov
  • A. V. Fedorov
Condensed-Matter Spectroscopy

Abstract

A theory of single-photon interband transitions involving optical phonons in semiconductor quantum dots (QDs) has been developed. This theory assumes that the electron subsystem of QDs with infinite potential walls is in strong confinement, and its energy spectrum can be described according to the two-band semiconductor model. Longitudinal optical phonons are considered to be related to the QD electron subsystem via polar (Fröhlich) electronphonon interaction. It is shown that, in these approximations, only the off-diagonal part of electron-phonon interaction leads to the generation of electron-hole pairs with the participation of phonons; the selection rules for these transitions differ from those for zero-phonon transitions. Analytical expressions for the light-absorption coefficients of ensembles of identical and size-distributed QDs have been obtained.

References

  1. 1.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg., 2011) [in Russian].Google Scholar
  2. 2.
    S. V. Gaponenko, N. N. Rozanov, E. L. Ivchenko, A. V. Baranov, A. M. Bonch-Bruevich, T. A. Vartanyan, and S. G. Przhibel’skii, Optics of Nanostructures(Nedra, St. Petersburg, 2005) [in Russian].Google Scholar
  3. 3.
    D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).Google Scholar
  4. 4.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanostructures (Cambridge University, Cambridge, 1998).CrossRefGoogle Scholar
  5. 5.
    A. I. Ekimov and A. A. Onushchenko, Fiz. Tekh. Poluprovodn. 16(7), 1215 (1982).Google Scholar
  6. 6.
    A. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovodn. 16(7), 1209 (1982).Google Scholar
  7. 7.
    J. M. Harbold, H. Du, T. D. Kraussand, K.-S. Cho, C. B. Murray, and F. W. Wise, Phys. Rev. B 72, 195312 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    A. Krügel, A. Vagov, V. M. Axt, and T. Kuhn, Phys. Rev. B 76, 195 302 (2007).CrossRefGoogle Scholar
  9. 9.
    D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, I. S. Butler, and P. Kambhampati, Phys. Rev. B 77, 235 321 (2008).CrossRefGoogle Scholar
  10. 10.
    H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, Phys. Rev. B 80, 235 319 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spektrosk. 109(3), 398 (2010) [Opt. Spectrosc. 109(3), 358 (2010)].ADSCrossRefGoogle Scholar
  12. 12.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spektrosk. 110(1), 28 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Andreev and A. A. Lipovskii, Phys. Rev. B 59, 15402 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, Phys. Rev. B 63, 195 322 (2001).CrossRefGoogle Scholar
  15. 15.
    S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. Lopez-Richard, and G. E. Margues, Phys. Rev. B 68, 235 327 (2003).CrossRefGoogle Scholar
  16. 16.
    G. A. Narvaez and A. Zunger, Phys. Rev. B 74, 045316 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, Phys. Rev. B 67, 201307(R) (2003).ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhao, A. Kanno, M. Ikezawa, and Y. Masumoto, Phys. Rev. B 68, 113305 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Fedorov and S. Yu. Kruchinin, Opt. Spektrosk. 97(3), 420 (2004) [Opt. Spectrosc. 97 (3), 394 (2004)].CrossRefGoogle Scholar
  20. 20.
    S. Yu. Kruchinin and A. V. Fedorov, Opt. Spektrosk. 100(1), 47 (2006) [Opt. Spectrosc. 100 (1), 41 (2006)].ADSCrossRefGoogle Scholar
  21. 21.
    K. Zeeger, Semiconductor Physics (Springer, Wien, 1977).Google Scholar
  22. 22.
    A. Lemaitre, A. D. Ashmore, J. J. Finley, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and T. F. Krauss, Phys. Rev. B 63, 161 309(R) (2001).CrossRefGoogle Scholar
  23. 23.
    D. Sarkar, H. P. van der Meulen, J. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, Phys. Rev. B 78, 241 305(R) (2008).Google Scholar
  24. 24.
    F. J. P. Wijnen, J. H. Blokland, P. T. K. Chin, P. C. M. Christianen, and J. C. Maan, Phys. Rev. B 78, 235 318 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    N. Ashcroft and N. Mermin, Semiconductor Physics(Holt, Rinehart, and Winston, New York, 1976).Google Scholar
  27. 27.
    T. O. Cheche, M. C. Chang, and S. H. Lin, Chem. Phys. 309, 109 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Solid State Commun. 122, 139 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    B. Krummheuer, V. M. Axt, and T. Kuhn, Phys. Rev. B 65, 195313 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    E. A. Muljarov, T. Takagahara, and R. Zimmermann, Phys. Rev. Lett. 95, 177 405 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Rudin, T. L. Reinecke, and M. Bayer, Phys. Rev. B 74, 161305(R) (2006).ADSCrossRefGoogle Scholar
  32. 32.
    G. Lindwall, A. Wacker, C. Weber, and A. Knorr, Phys. Rev. Lett. 99, 087 401 (2007).CrossRefGoogle Scholar
  33. 33.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  34. 34.
    A. V. Fedorov, A. V. Baranov, A. Itoh, and Y. Masumoto, Semiconductors 35(12), 1390 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 54, 8627 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    I. M. Tsidil’kovskii, Electrons and Holes in Semiconductors (Nauka, Moscow, 1972) [in Russian].Google Scholar
  37. 37.
    A. V. Fedorov and A. V. Baranov, JETP 83(3), 610 (1996).ADSGoogle Scholar
  38. 38.
    A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 56, 7491 (1997).ADSCrossRefGoogle Scholar
  39. 39.
    Semiconductors New Series, Group III, Ed. by O. Madelung, M. Schultz, and Landolt-Börnstein (Springer, Berlin, 1987), Vol. 22.Google Scholar
  40. 40.
    A. V. Baranov, A. V. Fedorov, I. D. Rurkhlenko, and Y. Masumoto, Phys. Rev. B 68, 205 318 (2003).Google Scholar
  41. 41.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    A. V. Fedorov and A. V. Baranov, Opt. Spectrosc. 97(1), 56 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    A. V. Fedorov and A. V. Baranov, Semiconductors 38, 1065 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, Phys. Rev. B 71, 195310 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, Phys. Rev. B 76, 045332 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125311 (2008).ADSCrossRefGoogle Scholar
  47. 47.
    S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 81, 245303 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    S. Y. Kruchinin, A. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, J. Chem. Phys. 133, 104704 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. S. Baimuratov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations