Optics and Spectroscopy

, Volume 110, Issue 6, pp 897–902 | Cite as

Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods

  • V. V. Danilov
  • M. V. Artem’ev
  • A. V. Baranov
  • A. O. Orlova
  • M. V. Mukhina
  • A. I. Khrebtov
Condensed-Matter Spectroscopy


Liquid-crystal (LC) composites based on a combination of different acrylates and pentylcyanobiphenyl and containing CdSe/ZnS semiconductor quantum nanorods have been investigated. Samples of electro-optical cells with planar or homeotropic structures (depending on the acrylate type) have been obtained. The morphology of LC composite formation has been studied using luminescence techniques. It is shown that these composites are gel-like LC media, where the formation of dispersed and network structures in the cells plays a stabilizing role. The role of the electron transfer reactions during polymerization and the features of the kinetics of the Freedericksz effect (reorientation in an electric field) are discussed.


Luminescence Intensity Liquid Crystal Cell Liquid Crystal Polymer Liquid Crystal Molecule Nematic Director 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Chen, A. Nazzal, D. Goorskey, and X. Min, Phys. Rev. B 64, 245 (2001).Google Scholar
  2. 2.
    J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, Science 292, 2060 (2001).CrossRefGoogle Scholar
  3. 3.
    K. J. Wu, K. C. Chu, C. Y. Chao, H. Y. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, Nano Lett. 7, 1908 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Danilov, M. V. Artem’ev, A. V. Baranov, G. M. Ermolaeva, N. A. Utkina, and A. Khrebtov, Opt. Spektrosk. 105(2), 332 (2008) [Opt. Spectrosc. 105 (2), 306 (2008)].CrossRefGoogle Scholar
  5. 5.
    H. S. Chen, Y. F. Chen, C. W. Chen, S. H. Wang, K. C. Chu, C. Y. Chao, C. C. Kang, and P. T. Chou, J. Phys. Chem. 7, 1908 (2010).Google Scholar
  6. 6.
    R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, and H. Weller, Adv. Mater. 17, 1436 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Rizzo, C. Nobile, M. Mazzeo, M. De Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna, and G. Gigli, AcsNano 3(6), 1506 (2009).Google Scholar
  8. 8.
    V. V. Danilov, A. V. Baranov, G. K. El’yashevich, A. O. Orlova, G. G. Khokhlov, and A. I. Khrebtov, Opt. Spektrosk. 108(6), 814 (2010) [Opt. Spectrosc. 108 (6), 941 (2010)].CrossRefGoogle Scholar
  9. 9.
    M. Artemyev, B. Müller, and U. Woggon, Nano Lett. 3, 509 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Nauka, Moscow, 1978; Wiley, New York, 1983).Google Scholar
  11. 11.
    T. Xia and Zh. Yue, J. Am. Chem. Soc. 129, 6372 (2007).CrossRefGoogle Scholar
  12. 12.
    V. V. Danilov, G. V. Klimusheva, L. I. Zagainova, and A. I. Khrebtov, Khim. Fiz. 8, 214 (1989).Google Scholar
  13. 13.
    Yu. Piryatinskii, O. Yaroshchuk, L. Dolgov, T. Bidna, and D. Enke, Opt. Spektrosk. 97(4), 566 (2004) [Opt. Spectrosc. 97 (4), 537 (2004)].CrossRefGoogle Scholar
  14. 14.
    Y. K. Fung, A. Borstnic, S. Zumer, D.-K. Yang, and J. W. Doane, Phys. Rev. E 55(2), 1637 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Ryzhov, K. I. Gyriev, and N. N. Melnichenko, Proc. SPIE 4243, 209 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Danilov
    • 1
  • M. V. Artem’ev
    • 2
  • A. V. Baranov
    • 1
  • A. O. Orlova
    • 1
  • M. V. Mukhina
    • 1
  • A. I. Khrebtov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Institute of Physicochemical ProblemsBelarussian State UniversityMinskBelarus

Personalised recommendations