Advertisement

Optics and Spectroscopy

, Volume 110, Issue 5, pp 740–747 | Cite as

Intraband optical transitions in semiconductor quantum dots: Radiative electronic-excitation lifetime

  • V. K. Turkov
  • S. Yu. Kruchinin
  • A. V. Fedorov
Condensed-Matter Spectroscopy

Abstract

Intraband optical transitions in semiconductor quantum dots (QDs) in the forms of a parallelepiped, sphere, and cylinder have been considered. It is shown that the size dependence of the matrix elements of electron-photon interaction, which includes the intraband transitions, differs in the E · r and A · p representations of electron-photon coupling, which are widely used to describe various optical processes. The radiative intraband relaxation rates of QD electron excitations have been calculated, depending on the QD size and shape and the parameters of the QD material. It is shown that the radiative intraband transition rate may reach 109 s−1.

Keywords

Optical Phonon Intraband Transition Degenerate Level Intraband Relaxation Defect Free Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. I. Kang, B. P. McGinnes,, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Myserowicz, L. C. Liu, and S. H. Risbod, Phys. Rev. B 45, 3465 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    K. Edamatsu, M. Tsukii, K. Hayashibe, T. Itoh, B. P. Zhang, and Y. Segawa, J. Lumin. 76–77, 185 (1998).CrossRefGoogle Scholar
  3. 3.
    D. Collins, A. Jarjour, M. Hadjipanayi, R. Taylor, R. Oliver, M. Kappers, C. Humphreys, and A. Tahraoui, Nanotechnology 20, 245 702 (2009).CrossRefGoogle Scholar
  4. 4.
    A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 54, 8627 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    T. Uozumi and Y. Kayanuma, Phys. Rev. B 65, 165 318 (2002).Google Scholar
  6. 6.
    L. A. Padilha, J. Fu, D. J. Hagan, E. W. V. Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, Phys. Rev. B 75, 075 325 (2007).CrossRefGoogle Scholar
  7. 7.
    X. Feng and W. Ji, Opt. Express 17, 13140 (2009).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. J. Bentley, C. V. Anderson, and J. P. Dooher, Opt. Eng. 46, 128 003 (2007).CrossRefGoogle Scholar
  9. 9.
    X. Feng, Y. L. Ang, J. He, C. W. J. Beh, H. X. W. S. Chin, and W. Ji, Opt. Express 16, 6999 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    X. B. Feng, G. C. Xing, and W. Ji, J. Opt. A 11, 024004 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J.-Z. Zhanga and I. Galbraith, Appl. Phys. Lett. 84, 1934 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    F. F. Schrey, L. Rebohle, T. Juller, G. Strasser, K. U. D. P. Nguyen, N. Regnault, R. Ferreira, and G. Bastard, Phys. Rev. B 72, 155310 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movahgar, and M. Razeghi, Phys. Rev. B 72, 085332 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Klimov, A. A. Mikhailowsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B 61, 13349 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. B 74, 235 328 (2006).CrossRefGoogle Scholar
  16. 16.
    A. Pandey and P. Guyot-Sionnest, J. Chem. Phys. 127, 104 710 (2007).Google Scholar
  17. 17.
    S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, L. Seravalli, P. Frigeri, S. F. M. Capizzi, S. Mazzuccato, and A. Polimeni, Phys. Rev. B 78, 085 313 (2008).CrossRefGoogle Scholar
  18. 18.
    R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, Phys. Rev. Lett. 95, 196401 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    E. Hendry, M. Koeberg, F. Wang, H. Zhang, C. de Mello Donega, D. Vanmaekelbergh, and M. Bonn, Phys. Rev. Lett. 96, 057408 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    C. Bonati, A. Cannizzo, D. Tonti, A. Torschanoff, F. van Mouric, and M. Chergui, Phys. Rev. B 76, 033304 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074 709 (2005).CrossRefGoogle Scholar
  22. 22.
    A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).Google Scholar
  24. 24.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    T. Inoshita and H. Sakaki, Phys. Rev. B 56, R4355 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    X. Li, H. Nakayama, and Y. Arakawa, Phys. Rev. B 59, 5069 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205 318 (2003).Google Scholar
  29. 29.
    A. V. Fedorov and A. V. Baranov, Opt. Spektrosk. 97(1), 63 (2004) [Opt. Spectrosc. 97 (1), 56 (2004)].ADSCrossRefGoogle Scholar
  30. 30.
    A. V. Fedorov and A. V. Baranov, Fiz. Tekh. Poluprovodn. 38(9), 1101 (2004) [Semiconductors 38 (9), 1065 (2004)].Google Scholar
  31. 31.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. Gaponenko, Phys. Rev. B 71, 195 310 (2005).CrossRefGoogle Scholar
  32. 32.
    A. V. Fedorov and I. D. Rukhlenko, Opt. Spektrosk. 100(5), 779 (2006) [Opt. Spectrosc. 100 (5), 716 (2006)].CrossRefGoogle Scholar
  33. 33.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 100(2), 274 (2006) [Opt. Spectrosc. 100 (2), 238 (2006)].CrossRefGoogle Scholar
  34. 34.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 101(2), 268 (2006) [Opt. Spectrosc. 101 (2), 253 (2006)].CrossRefGoogle Scholar
  35. 35.
    D. F. Schroeter, D. J. Griffiths, and P. C. Sersel, Phys. Rev. B 54, 1486 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, Phys. Rev. B 70, 035 318 (2004).CrossRefGoogle Scholar
  37. 37.
    G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075 403 (2006).Google Scholar
  38. 38.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125 311 (2008).CrossRefGoogle Scholar
  39. 39.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 81, 245303 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997; Fizmatlit, Moscow, 2003).Google Scholar
  41. 41.
    S. V. Gaponenko, N. N. Rozanov, E. L. Ivchenko, A. V. Baranov, A. M. Bonch-Bruevich, T. A. Vartanyan, and S. G. Przhibel’skii, Optics of Nanostructures (Nedra, St. Petersburg, 2005) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. K. Turkov
    • 1
  • S. Yu. Kruchinin
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations