Optics and Spectroscopy

, Volume 110, Issue 4, pp 572–585 | Cite as

Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods

  • A. E. Ageyskiy
  • S. Yu. Kosulnikov
  • P. A. Belov
Physical Optics


The results of analytical modeling of the resonant excitation of evanescent harmonics in a medium formed by parallel metallic nanorods taking into account the spatial dispersion are presented. Analytical expressions are derived for the reflection and transmission coefficients, as well as for the amplitudes of electromagnetic waves inside the medium. These expressions are compared to similar expressions that were previously obtained using a local model of an ultimately anisotropic material without taking into account the spatial dispersion. The obtained expressions are simplified for various partial cases, including the superresolution imaging of a source that is located at a considerable distance from the metamaterial layer. A layer of a medium composed from finitesized wires is numerically simulated and it is demonstrated that, due to the effect of resonant excitation of evanescent spatial harmonics in the layer, subwavelength details of an object that is considerably distant from the layer can be distinguished inside of the layer.


Wave Vector Anisotropic Medium Spatial Dispersion Resonant Excitation Half Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).Google Scholar
  3. 3.
    V. A. Podolskiy and E. E. Narimanov, Opt. Lett. 30, 75 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    K. Aydin, I. Bulu, and E. Ozbay, Appl. Phys. Lett. 90(1–3), 254102 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    P. A. Belov, C. R. Simovski, P. Ikonen, M. G. Silveirinha, and Ya. Rao, Radiotekh. Elektron. (Moscow) 52, 1092 (2007).Google Scholar
  6. 6.
    M. G. Silveirinha, P. Belov, and C. R. Simovskiy, Opt. Lett. 33, 1726 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    P. B. Yan Zhao and Y. Hao, J. Optics. A 11(1–6), 075101 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    P. Belov, Y. Zhao, Y. Hao, and C. Parini, Opt. Lett. 34(4), 527 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. B 67, 113103 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    P. Belov and Y. Hao, Phys. Rev. B 73, 113110 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    P. A. Belov and M. G. Silveirinha, Phys. Rev. E 73, 56607 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    M. G. Silveirinha, IEEE Trans. Anten. Propagat. 54, 1766 (2006).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. E. Ageyskiy
    • 1
  • S. Yu. Kosulnikov
    • 1
  • P. A. Belov
    • 1
    • 2
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Queen Mary University of LondonSchool of Electronic Engineering and Computer ScienceLondonUK

Personalised recommendations