Advertisement

Optics and Spectroscopy

, Volume 110, Issue 3, pp 363–370 | Cite as

Formation mechanisms of equilibrium component composition of molecular layers of polymethine dyes

  • E. N. Kaliteevskaya
  • V. P. Krutyakova
  • T. K. Razumova
  • A. A. Starovoytov
Condensed-Matter Spectroscopy

Abstract

We study the concentration dependences for the absorption spectra and component composition of molecular layers from three homologous series of symmetric polymethine dyes of different electron-donating ability of their terminal heterocyclic groups. We find that a change in the layer thickness leads to a change in the width and position of the spectrum due to a change in the number of absorption bands. The number of bands of monomers increases with increasing chain length and electron-donating ability. The concentration ratio of monomers and associated forms depends on the spatial orientation of molecules in the layer. The electron-donating ability of terminal groups affects the angle between the chromophores of molecules that form a dimer and the intensity ratio between the short- and long-wavelength absorption bands of dimers. We conclude that the effect of the thickness of the layer on its spectral parameters is determined by the degree of intramolecular electron asymmetry that arises as a result of the interaction of chemically symmetric molecules with charges of the substrate surface and upon intermolecular interaction. This asymmetry leads to changes in free energies of ground states of monomeric molecules and, as a consequence, to an increase in equilibrium concentrations of cis-stereoisomeric forms in the layer.

Keywords

Thick Layer Molecular Layer Trans Isomer Homologous Series Terminal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Wright, in Molecular Crystals (Cambridge Univ. Press, Cambridge, 1995), p. 221.Google Scholar
  2. 2.
    Yang Wang, Donong Gu, and Fuxi Gan, Phys. Stat. Sol. A 186(1), 71 (2001).CrossRefADSGoogle Scholar
  3. 3.
    V. G. Kravets, K. L. Vinnichenko, and O. V. Prygun, Semicond. Phys. Quant. Electron. Optoelectron. 3(4), 520 (2000).Google Scholar
  4. 4.
    G. Biesmans, G. Verbeek, B. Verschuere, M. Van der Auverraer, and F. C. Deschryver, Thin Solid Films 169, 127 (1989).CrossRefADSGoogle Scholar
  5. 5.
    E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Opt. Spektrosk. 97(6), 955 (2004) [Opt. Spectrosc. 97 (6), 901 (2004)].CrossRefGoogle Scholar
  6. 6.
    D. J. Campbell, D. A. Yiggins, and R. M. Corn, J. Phys. Chem. 94, 3681 (1990).CrossRefGoogle Scholar
  7. 7.
    T. Inoue, M. Moriguchi, and T. Ogawa, Thin Solid Films 350, 238 (1999).CrossRefADSGoogle Scholar
  8. 8.
    A. Naber, U. C. Fischer, S. Kirchner, T. Dziomba, G. Kollar, L. F. Chi, and H. Fuchs, J. Phys. Chem. 103, 2709 (1999).CrossRefGoogle Scholar
  9. 9.
    Sh. M. Ohline, S. Lee, S. Williams, and C. Chang, Chem. Phys. Lett. 346(1), 9 (2001).CrossRefADSGoogle Scholar
  10. 10.
    J. Bujdak and N. Iyi, Colloid Interface Sci. 326, 432 (2008).CrossRefGoogle Scholar
  11. 11.
    Sh.-I. Morita, K. Iruyama, and Y. Ozaki, J. Chem. Phys. 104, 1183 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Hiroaki, S. Fumiyasu, and M. Mutsuyoshi, Thin Solid Films 372, 237 (2000).CrossRefGoogle Scholar
  13. 13.
    A. M. Bonch-Bruevich, E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Izv. Akad. Nauk, Ser. Fiz. 65(4), 478 (2001).Google Scholar
  14. 14.
    A. M. Bonch-Bruevich, E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Opt. Zh. 71(6), 46 (2004).Google Scholar
  15. 15.
    M. Surin, Ph. Leclere, S. De Feyter, M. M. S. Abdel-Mottaleb, F. C. De Schryver, O. Hence, W. J. Feast, and R. Lazzaroni, J. Phys. Chem. B 110, 7898 (2006).CrossRefGoogle Scholar
  16. 16.
    Li Jing and Fuxi Gan, Appl. Opt. 39, 3526 (2000).Google Scholar
  17. 17.
    A. D. Kachkovskii, Structure and Color of Polymethine Dyes (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  18. 18.
    A. A. Ishchenko, Structure and Spectral Luminescence Properties of Polymethine Dyes (Naukova Dumka, Kiev, 1994) [in Russian].Google Scholar
  19. 19.
    V. A. Kuz’min, Usp. Nauchn. Fotogr. 22, 90 (1984).MathSciNetGoogle Scholar
  20. 20.
    T. K. Razumova, A. N. Tarnovskii, and E. P. Shchelkina, Opt. Spektrosk. 72(5), 1102 (1992) [Opt. Spectrosc. 72 (5), 604 (1992)].Google Scholar
  21. 21.
    B. I. Shapiro, Usp. Khim. 75(5), 484 (2006).Google Scholar
  22. 22.
    J. Rodriges, D. Scherlis, D. Estrin, P. F. Aramendia, and R. M. Negri, J. Phys. Chem. 101(37), 6998 (1997).Google Scholar
  23. 23.
    J. Park, Dyes Pigments 46, 155 (2000).CrossRefGoogle Scholar
  24. 24.
    Ya. V. Batyuto, T. K. Razumova, and A. N. Tarnovskii, Opt. Spektrosk. 93(3), 434 (2002) [Opt. Spectrosc. 93 (3), 399 (2002)].CrossRefGoogle Scholar
  25. 25.
    A. M. Bonch-Bruevich, T. K. Razumova, A. N. Tarnovskii, and A. S. Tibilov, Opt. Zh. 73(6), 39 (2006).Google Scholar
  26. 26.
    T. K. Razumova and A. N. Tarnovskii, Opt. Spektrosk. 86(5), 778 (1999) [Opt. Spectrosc. 86 (5), 692 (1999)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. N. Kaliteevskaya
    • 1
  • V. P. Krutyakova
    • 1
  • T. K. Razumova
    • 1
  • A. A. Starovoytov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations