Advertisement

Optics and Spectroscopy

, Volume 110, Issue 1, pp 24–32 | Cite as

Transient interband light absorption by quantum dots: Nondegenerate case of pump-probe spectroscopy

  • M. Yu. Leonov
  • A. V. Baranov
  • A. V. Fedorov
Condensed-Matter Spectroscopy

Abstract

A theoretical description of the pump-probe optical method is presented that is adapted to semi-conductor quantum dots and makes it possible to determine the energy relaxation rates of the excited states of electron-hole pairs and excitons in these objects. A scheme of the method is considered in which the carrier frequencies of optical pump and probe pulses are close to the resonance with different interband transitions of the quantum-dot electron subsystem (nondegenerate case). It is assumed that the final states to which electron subsystem passes as a result of the absorption of pump and probe pulses are interrelated by intraband relaxation. The probe-pulse energy absorption induced by the pump pulse is analyzed as a function of the delay time between the pulses. It is shown that this dependence tends to be biexponential under certain conditions. The exponential factors are proportional to the energy relaxation rates of the resonantly excited states of electron-hole pairs and excitons, while the preexponential factors depend on the intraband relaxation rate.

Keywords

Hole Pair Pump Pulse Probe Pulse Electron Subsystem Nondegenerate Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Gaponenko, N. N. Rozanov, E. L. Ivchenko, A. V. Baranov, A. M. Bonch-Bruevich, T. A. Vartanyan, and S. G. Przhibel’skii, Optics of Nanostructures (Nedra, St. Petersburg, 2005) [in Russian].Google Scholar
  2. 2.
    Device Applications of Silicon Nanocrystals and Nanostructures, Ed. by N. Koshida (Springer Science + Business Media, New York, 2009).Google Scholar
  3. 3.
    S. Sanguinetti, M. Guzzi, E. Grilli, et al., Phys. Rev. B 78, 085 313 (2008).CrossRefGoogle Scholar
  4. 4.
    U. Bockelman and G. Bastard, Phys. Rev. B 42, 8947 (1990).CrossRefADSGoogle Scholar
  5. 5.
    H. Benisty, C. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).CrossRefADSGoogle Scholar
  6. 6.
    R. D. Schaller, J. M. Pietryga, S. V. Goupalov, et al., Phys. Rev. Lett. 95, 196 401 (2005).CrossRefGoogle Scholar
  7. 7.
    E. Hendry, M. Koeberg, F. Wang, et al., Phys. Rev. Lett. 96, 057 408 (2006).CrossRefGoogle Scholar
  8. 8.
    C. Bonati, A. Cannizzo, D. Tonti, et al., Phys. Rev. B 76, 033 304 (2007).CrossRefGoogle Scholar
  9. 9.
    P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074 709 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).Google Scholar
  12. 12.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).CrossRefADSGoogle Scholar
  13. 13.
    T. Inoshita and H. Sakaki, Physica B 227, 373 (1996).CrossRefADSGoogle Scholar
  14. 14.
    T. Inoshita and H. Sakaki, Phys. Rev. B 56, R4355 (1997).CrossRefADSGoogle Scholar
  15. 15.
    X. Li and Y. Arakawa, Phys. Rev. B 57, 12285 (1998).CrossRefADSGoogle Scholar
  16. 16.
    X. Li, H. Nakayama, and Y. Arakawa, Phys. Rev. B 59, 5069 (1999).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205 318 (2003).Google Scholar
  19. 19.
    A. V. Fedorov and A. V. Baranov, Opt. Spektrosk. 97(1), 63 (2004) [Opt. Spectrosc. 97 (1), 56 (2004)].CrossRefADSGoogle Scholar
  20. 20.
    A. V. Fedorov and A. V. Baranov, Fiz. Tekh. Poluprovodn. 38(9), 1101 (2004) [Semiconductors 38 (9), 1065 (2004)].Google Scholar
  21. 21.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. Gaponenko, Phys. Rev. B 71, 195 310 (2005).CrossRefGoogle Scholar
  22. 22.
    A. V. Fedorov and I. D. Rukhlenko, Opt. Spektrosk. 100(5), 779 (2006) [Opt. Spectrosc. 100 (5), 716 (2006)].CrossRefGoogle Scholar
  23. 23.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 100(2), 274 (2006) [Opt. Spectrosc. 100 (2), 238 (2006)].CrossRefGoogle Scholar
  24. 24.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 101(2), 268 (2006) [Opt. Spectrosc. 101 (2), 253 (2006)].CrossRefGoogle Scholar
  25. 25.
    P. C. Sercel, Phys. Rev. B 51, 14532 (1995).CrossRefADSGoogle Scholar
  26. 26.
    D. F. Schroeter, D. J. Griffiths, and P. C. Sersel, Phys. Rev. B 54, 1486 (1996).CrossRefADSGoogle Scholar
  27. 27.
    M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, Phys. Rev. B 70, 035 318 (2004).CrossRefGoogle Scholar
  28. 28.
    I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, Berlin, 1989).CrossRefGoogle Scholar
  29. 29.
    G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075 403 (2006).Google Scholar
  30. 30.
    S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, et al., Phys. Rev. B 78, 125 311 (2008).CrossRefGoogle Scholar
  31. 31.
    S. Y. Kruchinin, A. V. Fedorov, A. V. Baranov, et al., Phys. Rev. B 81 (2010).Google Scholar
  32. 32.
    H. Kurtze, J. Seebeck, P. Gartner, et al., Phys. Rev. B 80, 235 319 (2009).CrossRefGoogle Scholar
  33. 33.
    H.-Y. Liu, Z.-M. Meng, Q.-F. Dai, et al., J. Appl. Phys. 103, 083 121 (2008).Google Scholar
  34. 34.
    T. Berstermann, T. Auer, H. Kurtze, et al., Phys. Rev. B 76, 165 318 (2007).CrossRefGoogle Scholar
  35. 35.
    F. M. B. Trojánek. K. Neudert, and P. Maly, Phys. Rev. B 72, 075 365 (2005).Google Scholar
  36. 36.
    K. Miyajimaa, K. Edamatsub, and T. Itoh, J. Lumin. 108, 371 (2004).CrossRefGoogle Scholar
  37. 37.
    J. Urayama, T. B. Norris, H. Jiang, et al., Appl. Phys. Lett. 80, 2162 (2002).CrossRefADSGoogle Scholar
  38. 38.
    V. I. Klimov, C. J. Schwarz, D. W. McBranch, et al., Phys. Rev. B 60, R2177 (1999).CrossRefADSGoogle Scholar
  39. 39.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spektrosk. 109(3), 449 (2010) [Opt. Spectrosc. 109 (3), 358 (2010)].CrossRefGoogle Scholar
  40. 40.
    S. L. Sewall, R. R. Cooney, K. E. H. Anderson, et al., Phys. Rev. B 74, 235 328 (2006).CrossRefGoogle Scholar
  41. 41.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, et al., Phys. Rev. B 61, R133349 (2000).CrossRefGoogle Scholar
  42. 42.
    D. A. Yarotski, R. D. Averitt, N. Negre, et al., J. Opt. Soc. Am. B 19, 1480 (2002).CrossRefADSGoogle Scholar
  43. 43.
    M. C. Hoffmann, J. Hebling, H. Y. Hwang, et al., Phys. Rev. B 79, 161 201 (2009).CrossRefGoogle Scholar
  44. 44.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spektrosk. 92(5), 797 (2002) [Opt. Spectrosc. 92 (5), 732 (2002)].CrossRefGoogle Scholar
  45. 45.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spektrosk. 93(1), 56 (2002) [Opt. Spectrosc. 93 (1), 52 (2002)].CrossRefADSGoogle Scholar
  46. 46.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spektrosk. 93(4), 604 (2002) [Opt. Spectrosc. 93 (4), 555 (2002)].CrossRefGoogle Scholar
  47. 47.
    A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, NJ, 1978).Google Scholar
  48. 48.
    I. M. Lifshitz and V. V. Slezov, Zh. Eksp. Teor. Fiz. 35, 479 (1958).Google Scholar
  49. 49.
    M. Ivanda, K. Babocsi, C. Dem, et al., Phys. Rev. B 67, 235 329 (2003).CrossRefGoogle Scholar
  50. 50.
    D. L. Ferreira and J. L. A. Alves, Nanotechnology 15, 975 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. Yu. Leonov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations