Advertisement

Optics and Spectroscopy

, Volume 109, Issue 6, pp 938–950 | Cite as

Validity range of model of effective medium for describing layered metal-dielectric nanostructured metamaterials

  • A. V. Chebykin
  • A. A. Orlov
  • P. A. Belov
Physical Optics

Abstract

The strong spatial dispersion effects in a layered metal-dielectric metamaterial are demonstrated by analyzing its dispersion properties and calculating its transmission and reflection coefficients. The descriptions of this metamaterial by a model of effective medium and by an exact method of transmission matrices are compared in detail. It is shown that the electromagnetic properties of the considered metamaterial cannot be completely described in terms of the local effective model, because of the occurrence of additional eigenmodes, which are caused by the spatial dispersion. This circumstance is a critically important feature near the resonant absorption line of surface plasmon-polaritons.

Keywords

Dielectric Permittivity Transmission Coefficient Effective Medium Effective Model Transmission Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010).Google Scholar
  2. 2.
    L. I. Mandelstam, Lecture Notes in Optics, Relativity, and Quantum Mechanics (Nauka, Moscow, 1972) [in Russian].Google Scholar
  3. 3.
    D. V. Sivukhin, Opt. Spektrosk. 3(2), 308 (1957).Google Scholar
  4. 4.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).Google Scholar
  5. 5.
    J. B. Pendry, Phys. Rev. Lett. 85, 18 (2000).CrossRefGoogle Scholar
  6. 6.
    B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115 116 (2006).CrossRefGoogle Scholar
  7. 7.
    N. Fang, H. Lee, and C. Sun, Science 308, 534 (2005).CrossRefADSGoogle Scholar
  8. 8.
    P. A. Belov and Y. Hao, Phys. Rev. B 73, 113 110 (2006).Google Scholar
  9. 9.
    J. B. Pendry and S. A. Ramakrishna, Physica B 338, 329 (2003).CrossRefADSGoogle Scholar
  10. 10.
    E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, Electron. 37, 1243 (2001).Google Scholar
  11. 11.
    M. Salandrino and N. Engheta, Phys. Rev. Lett. 74, 075 103 (2006).Google Scholar
  12. 12.
    J. Zubin, L. V. Alekseyev, and E. Narimanov, Opt. Express 14(18), 8247 (2006).CrossRefADSGoogle Scholar
  13. 13.
    Z. Liu, H. Lee, Y. Xiong, and X. Zhang, Science 315, 1686 (2007).CrossRefADSGoogle Scholar
  14. 14.
    Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111 116 (2008).Google Scholar
  15. 15.
    M. Scalora, M. J. Bloemer, and A. S. Pethel, J. Appl. Phys. 83, 2377 (1998).CrossRefADSGoogle Scholar
  16. 16.
    M. Scalora, G. D’Aguanno, and N. Mattiucci, Opt. Express 15, 508 (2007).CrossRefADSGoogle Scholar
  17. 17.
    J. B. Pendry, D. Schuring, and D. R. Smith, Science 3, 1 (2006).CrossRefGoogle Scholar
  18. 18.
    W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nature 10, 1038 (2007).Google Scholar
  19. 19.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1973).Google Scholar
  20. 20.
    R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, Thin Solid Films 410, 86 (2002).CrossRefADSGoogle Scholar
  21. 21.
    A. Kasikov, J. Aarik, H. Mandar, M. Moppel, M. Pars, and T. Uustare, J. Phys. D 39, 54 (2006).CrossRefADSGoogle Scholar
  22. 22.
    Y. U. Ahna, E. J. Kimb, H. T. Kimc, and S. H. Hahn, Mat. Lett. 57, 4660 (2003).CrossRefGoogle Scholar
  23. 23.
    N. K. Sahoo, S. Thakur, and R. B. Tokas, Appl. Surf. Science 253, 618 (2006).CrossRefADSGoogle Scholar
  24. 24.
    J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, Opt. Express 15(12), 20 (2007).Google Scholar
  25. 25.
    J. Elser, V. A. Podolksiy, I. Salakhutdinov, and I. Avrutsky, Appl. Phys. Lett. 90, 191 109 (2007).CrossRefGoogle Scholar
  26. 26.
    R. J. Pollard, A. Murphys, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolksiy, Phys. Rev. Lett. 102, 127 405 (2009).CrossRefGoogle Scholar
  27. 27.
    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (2nd ed., Nauka, Moscow, 1979; Springer, New York, 1984).Google Scholar
  28. 28.
    J. T. Shen, B. Catrysse, and Fan. Shanhui, Phys. Rev. Lett. 94, 197 401 (2005).CrossRefGoogle Scholar
  29. 29.
    P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, Opt. Lett. 34(4), 527 (2009).CrossRefADSGoogle Scholar
  30. 30.
    M. Silverinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).CrossRefADSGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 3rd ed. (Nauka, Moscow, 1992; Pergamon, New York, 1984).Google Scholar
  32. 32.
    D. Smith and D. Schurig, Phys. Rev. Lett. 90, 077 405 (2003).Google Scholar
  33. 33.
    D. Smith, P. Kolinko, and D. Schurig, J. Opt. Soc. Am. B 21, 1032 (2004).CrossRefADSGoogle Scholar
  34. 34.
    D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett. 84, 13 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations