Advertisement

Optics and Spectroscopy

, Volume 109, Issue 3, pp 432–443 | Cite as

Near- and far-field light scattering by nonspherical particles: Applicability of methods that involve a spherical basis

  • V. G. Farafonov
  • V. B. Il’inEmail author
  • A. A. Vinokurov
Physical Optics

Abstract

The separation of variables method for coordinate system, the extended boundary condition method, and the point-matching method that are used to solve the problem of light scattering by nonspherical particles are considered from a unified viewpoint. It is shown that, if the mathematical correctness condition (the Rayleigh hypothesis) holds, these methods are interrelated and are equivalent. The applicability ranges of the methods in the near- and far-field zones are analyzed, discussed, and compared on both analytical (based on analytical investigations) and practical (based on numerical calculations) grounds.

Keywords

Scattered Radiation Scattered Field Axisymmetric Problem Nonspherical Particle Field Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, 2000).Google Scholar
  2. 2.
    F. M. Kahnert, J. Quant. Spectr. Rad. Transf. 79–80, 775 (2003).CrossRefGoogle Scholar
  3. 3.
    V. G. Farafonov and V. B. Il’in, in Light Scattering Reviews, Ed. by A. A. Kokhanovsky (Springer, Berlin, 2006), p. 125.CrossRefGoogle Scholar
  4. 4.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958).zbMATHGoogle Scholar
  5. 5.
    V. G. Farafonov and V. B. Il’in, Opt. Spektrosk. 100(3), 484 (2006) [Opt. Spectrosc. 100 (3), 437 (2006)].CrossRefGoogle Scholar
  6. 6.
    V. G. Farafonov and V. B. Il’in, Opt. Spektrosk. 91(6), 1021 (2001) [Opt. Spectrosc. 91 (6), 960 (2001)].CrossRefGoogle Scholar
  7. 7.
    V. G. Farafonov, Opt. Spectrosc. 92(5), 748 (2002).CrossRefADSGoogle Scholar
  8. 8.
    V. F. Apel’tsin and A. G. Kyurkchan, Analytical Properties of Wave Fields (Mosk. Gos. Univ., Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    R. F. Millar, Radio Sci. 8, 785 (1973).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    V. G. Farafonov, A. A. Vinokurov, and V. B. Il’in, Opt. Spektrosk. 92, 741 (2007)Google Scholar
  11. 11.
    N. T. Zakharova and M. I. Mishchenko, Appl. Opt. 39, 5052 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. G. Farafonov
    • 1
  • V. B. Il’in
    • 1
    • 2
    • 3
    Email author
  • A. A. Vinokurov
    • 1
    • 2
  1. 1.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia
  2. 2.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations