Optics and Spectroscopy

, Volume 109, Issue 3, pp 407–412 | Cite as

On two models of light pulse delay in saturable absorber

  • V. S. Zapasskiĭ
  • G. G. Kozlov
Nonlinear and Quantum Optics

Abstract

A comparative analysis of two approaches to the description of the light modulation pulse in a saturable absorber is presented. According to the simplest model, the delay of the optical pulse is a result of the distortion of its shape due to the self-modulation of absorption in the nonlinear medium. The second model of the effect, arisen at the beginning of our century, relates the pulse delay to the so-called “slow light,” attributing this delay to the group velocity reduction under the condition of coherent oscillations of the population. It is shown that the data of all known experiments on the light pulse delay in saturable absorbers can be comprehensively described in terms of the simplest model of saturable absorber and do not require invoking the effect of population coherent oscillations with spectral hole-burning and anomalous modifications of the light group velocity. It is concluded that the effect of the group velocity reduction under the condition of population coherent oscillations has not received so far any experimental confirmation, and the assertions about real observation of the slow light based on this mechanism are unfounded.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Happer, Rev. Mod. Phys. 44, 169 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    A. C. Selden, Brit. J. Appl. Phys. 18, 743 (1967).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A. C. Selden, J. Phys. D 3, 1935 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    A. C. Selden, Electron. Lett. 7, 287 (1971).CrossRefGoogle Scholar
  5. 5.
    H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7(10), 270 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    M. Hercher, W. Chu, and D. L. Stockman, J. Quant. Electron. 4(11), 954 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Zapasskiĭ and G. G. Kozlov, Opt. Spektrosk. 104(1), 100 (2008) [Opt. Spectrosc. 104 (1), 95 (2008)].ADSGoogle Scholar
  8. 8.
    M. S. Lepeshkin. N. N. Bigelow, and R. W. Boyd, Phys. Rev. Lett. 90(11), 113903 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    M. S. Lepeshkin. N. N. Bigelow and R. W. Boyd, Science 301, 200 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    S. E. Schwarz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    P. W. Milonni, Fast Light, Slow Light, and Left-Handed Light (Inst. Phys., Bristol, 2005).Google Scholar
  12. 12.
    Slow Light: Science and Applications, Ed. by J. B. Khurgin and R.S. Tucker (CRC Press, New York, 2009).Google Scholar
  13. 13.
  14. 14.
    V. S. Zapasskiĭ and G. G. Kozlov, Opt. Spektrosk. 100(3), 461 (2006) [Opt. Spectrosc. 100 (3), 419 (2006)].Google Scholar
  15. 15.
    E. B. Aleksandrov and V. S. Zapasskiĭ, Usp. Fiz. Nauk 176(10), 1093 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Boyd, J. Eur. Opt. Soc. 2, 07004 (2007).Google Scholar
  17. 17.
    B. Macke and B. Segard, Phys. Rev. A 78, 013817 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    S. Stepanov and E. Hernandez, Opt. Lett. 33(19), 2242 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    E. B. Aleksandrov, V. S. Zapasskii, G. G. Kozlov, and A. C. Selden, http://arxiv.org/pdf/0806.2732v1.
  20. 20.
    A. C. Selden, Opt. Spectr. 106(6), 881 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    R. W. Boyd, J. Mod. Opt. 56, 1908 (2009).ADSMATHCrossRefGoogle Scholar
  22. 22.
    A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud, Jr., J. Opt. Soc. Am. B 1, 73 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    P. Wu and D. V. G. L. Rao, Phys. Rev. Lett. 95, 253601 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    V. S. Zapasskii and G. G. Kozlov, Opt. Express 17(24), 22154 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    P. C. Ku, F. Sedgwick, and C. J. Chang-Hasnain, Opt. Lett. 29(19), 2291 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    H. Su and S. L. Chuang, Opt. Lett. 31(2), 271 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeursl, Phys. Rev. A 71, 053811 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    H. Wang, Y. Zhang, H. Tian, N. Wang, L. Ma, and P. Yuan, Appl. Phys. B 92, 487 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. Zapasskiĭ
    • 1
  • G. G. Kozlov
    • 1
  1. 1.Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations