Optics and Spectroscopy

, Volume 109, Issue 3, pp 392–396 | Cite as

Endoscopic cross-polarization spectrometer as an instrument for puncture diagnostics

  • V. A. KamenskyEmail author
  • A. N. Morozov
  • A. V. Mjakov
  • P. D. Agrba
  • N. M. Shakhova
Condensed-Matter Spectroscopy


A modification of the polarization reflection spectroscopy method is proposed with the use of a polarization-maintaining single-mode fiber. The choice of the fiber made it possible to create an optimal self-consistent system for the illumination of a biological tissue and the reception of scattered radiation and to create a probe compatible with any endoscopic equipment. The first clinical results of diagnosing tumor diseases with the created instrument showed that it is possible to determine the tumor-norm boundary, which is very important for organ-preserving operations. All of the results obtained by this method agree well with the results obtained by the method of polarization-sensitive optical coherence tomography.


Scattered Radiation Orthogonal Polarization Neoplastic Change Depolarization Ratio Optical Coherent Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. Thun, CA Cancer J. Clin. 57, 43 (2007).CrossRefGoogle Scholar
  2. 2.
    D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, CA Cancer J. Clin. 55, 74 (2005).CrossRefGoogle Scholar
  3. 3.
    V. N. Lopatin, A. V. Priezzhev, and A. D. Aponasenko, Light Scattering Methods in Analysis of Dispersed Biological Media (Nauka, Moscow, 2004) [in Russian].Google Scholar
  4. 4.
    A. M. Sergeev, L. S. Dolin, and D. H. Reitze, Opt. Photonics News 18(1), 28 (2001).CrossRefGoogle Scholar
  5. 5.
    V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, 2007).Google Scholar
  6. 6.
    K. Sokolov, R. Drezek, and K. Gossage, Opt. Express 5, 302 (1999).CrossRefADSGoogle Scholar
  7. 7.
    A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, J. Biomed. Opt. 7(3), 388 (2002).CrossRefADSGoogle Scholar
  8. 8.
    V. Backman, R. S. Gurjar, Badizadegan, I. Itzkan, R. Dasari, L. T. Perelman, and M. S. Feld, Nature 406, 35 (2000).CrossRefADSGoogle Scholar
  9. 9.
    J. M. Schmitt, IEEE J. Select. Top. Quant. Electron. 5(4), 1205 (1999).CrossRefGoogle Scholar
  10. 10.
    R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, Nature Medicine. 7, 1245 (2001).CrossRefGoogle Scholar
  11. 11.
    J. M. Schmitt and S. H. Xiang, Opt. Lett. 23(13), 1060 (1998).CrossRefADSGoogle Scholar
  12. 12.
    R. V. Kuranov, V. V. Sapozhnikova, I. V. Turchin, E. V. Zagainova, V. M. Gelikonov, V. A. Kamensky, L. B. Snopova, and N. N. Prodanetz, Opt. Express 10, 707 (2002).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. A. Kamensky
    • 1
    Email author
  • A. N. Morozov
    • 1
  • A. V. Mjakov
    • 1
  • P. D. Agrba
    • 1
  • N. M. Shakhova
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations