Optics and Spectroscopy

, Volume 109, Issue 3, pp 358–365 | Cite as

Transient interband light absorption by quantum dots: Degenerate pump-probe spectroscopy

Condensed-Matter Spectroscopy

Abstract

The optical pump-probe method, which makes it possible to determine the energy relaxation rate for excited electron-hole pairs and excitons in semiconductor quantum dots (QDs), is theoretically described. A scheme in which the carrier frequencies of optical pump and probe pulses are close to resonance with the same interband transition in the QD electron subsystem (degenerate case) is considered. The pump-induced probe energy absorption is analyzed as a function of the delay time between the pump and probe pulses. It is shown that under certain conditions this dependence is reduced to monoexponential, whose exponent is proportional to the energy relaxation rate for the considered state of electron-hole pairs and excitons. The size dependence of the energy relaxation rate of the electron-hole pair states is modeled by the example of PbSe-based QDs, whose electron subsystem is in the strong-confinement regime.

Keywords

Hole Pair PbSe Probe Pulse Exciton State Electron Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, L. Seravalli, P. Frigeri, S. Pranchi, M. Capizzi, S. Mazzuccato, and A. Polimeni, Phys. Rev. B 78, 085 313 (2008).CrossRefGoogle Scholar
  2. 2.
    U. Bockelman and G. Bastard, Phys. Rev. B 42, 8947 (1990).CrossRefADSGoogle Scholar
  3. 3.
    H. Benisty, C. M. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).CrossRefADSGoogle Scholar
  4. 4.
    V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).Google Scholar
  5. 5.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).CrossRefADSGoogle Scholar
  6. 6.
    T. Inoshita and H. Sakaki, Physica B 227, 373 (1996).CrossRefADSGoogle Scholar
  7. 7.
    T. Inoshita and H. Sakaki, Phys. Rev. B 56, R4355 (1997).CrossRefADSGoogle Scholar
  8. 8.
    X. Q. Li and Y. Arakawa, Phys. Rev. B 57, 12285 (1998).CrossRefADSGoogle Scholar
  9. 9.
    X. Q. Li, H. Nakayama, and Y. Arakawa, Phys. Rev. B 59, 5069 (1999).CrossRefADSGoogle Scholar
  10. 10.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).CrossRefADSGoogle Scholar
  11. 11.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205 318 (2003).Google Scholar
  12. 12.
    A. V. Fedorov and A. V. Baranov, Opt. Spektrosk. 97(1), 63 (2004) [Opt. Spectrosc. 97 (1), 56 (2004)].CrossRefADSGoogle Scholar
  13. 13.
    A. V. Fedorov and A. V. Baranov, Fiz. Tekh. Poluprovodn. 38(9), 1101 (2004) [Semiconductors 38 (9), 1065 (2004)].Google Scholar
  14. 14.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, Phys. Rev. B 71, 195 310 (2005).CrossRefGoogle Scholar
  15. 15.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 100(2), 274 (2006) [Opt. Spectrosc. 100 (2), 238 (2006)].CrossRefGoogle Scholar
  16. 16.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spektrosk. 101(2), 268 (2006) [Opt. Spectrosc. 101 (2), 253 (2006)].CrossRefGoogle Scholar
  17. 17.
    P. C. Sercel, Phys. Rev. B 51, 14532 (1995).CrossRefADSGoogle Scholar
  18. 18.
    D. F. Schroeter, D. J. Griffiths, and P. C. Sersel, Phys. Rev. B 54, 1486 (1996).CrossRefADSGoogle Scholar
  19. 19.
    Ph. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074 709 (2005).CrossRefGoogle Scholar
  20. 20.
    M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, Phys. Rev. B 70, 035 318 (2004).CrossRefGoogle Scholar
  21. 21.
    I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, Berlin, 1989).Google Scholar
  22. 22.
    G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075 403 (2006).Google Scholar
  23. 23.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125311 (2008).CrossRefADSGoogle Scholar
  24. 24.
    H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, Phys. Rev. B 80, 235 319 (2009).CrossRefGoogle Scholar
  25. 25.
    H. Y. Liu, Z. M. Meng, Q. F. Dai, L. J. Wu, Q. Guo, W. Hu, S. H. Liu, Sh. Lan, and T. Yang, J. Appl. Phys. 103, 083 121 (2008).Google Scholar
  26. 26.
    T. Berstermann, T. Auer, H. Kurtze, M. Schwab, D. R. Yakovlev, M. Bayer, J. Wiersig, C. Gies, F. Jahnke, D. Reuter, and A. D. Wieck, Phys. Rev. B 76, 165 318 (2007).CrossRefGoogle Scholar
  27. 27.
    F. Trojánek, K. Neudert, M. Bittner, and P. Maly, Phys. Rev. B 72, 075 365 (2005).CrossRefGoogle Scholar
  28. 28.
    K. Miyajimaa, K. Edamatsub, and T. Itoh, J. Lumin. 108, 371 (2004).CrossRefGoogle Scholar
  29. 29.
    J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, Appl. Phys. Lett. 80, 2162 (2002).CrossRefADSGoogle Scholar
  30. 30.
    V. I. Klimov, Ch. J. Schwarz, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B 60, R2177 (1999).CrossRefADSGoogle Scholar
  31. 31.
    S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. B 74, 235 328 (2006).CrossRefGoogle Scholar
  32. 32.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B 61, R13349 (2000).CrossRefADSGoogle Scholar
  33. 33.
    D. A. Yarotski, R. D. Averitt, N. Negre, S. A. Crooker, A. J. Taylor, G. P. Donati, A. Stintz, L. F. Lester, and K. J. Malloy, J. Opt. Soc. Am. B 19, 1480 (2002).CrossRefADSGoogle Scholar
  34. 34.
    M. C. Hoffmann, J. Hebling, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 161 201 (2009).CrossRefGoogle Scholar
  35. 35.
    S. V. Gaponenko, N. N. Rozanov, E. L. Ivchenko, A. V. Fedorov, A. V. Baranov, A. M. Bonch-Bruevich, T. A. Vartanyan, and S. G. Przhibel’skiĭ, Optics of Nanostructures (Nedra, St. Petersburg, 2005) [in Russian].Google Scholar
  36. 36.
    K. Blum, Density-Matrix Theory and Applications (Plenum, New York, 1981; Mir, Moscow, 1983).Google Scholar
  37. 37.
    A. I. Ansel’m, Introduction to Theory of Semiconductors (Mir, Moscow, 1978) [in Russian].Google Scholar
  38. 38.
    I. M. Lifshits and V. V. Slezov, Zh. Eksp. Teor. Fiz. 35(2), 479 (1958).Google Scholar
  39. 39.
    M. Ivanda, K. Babocsi, C. Dem, M. Schmitt, M. Montagna, and W. Kiefer, Phys. Rev. B 67, 235 329 (2003).CrossRefGoogle Scholar
  40. 40.
    D. L. Ferreira and J. L. A. Alves, Nanotechnology 15, 975 (2004).CrossRefADSGoogle Scholar
  41. 41.
    T. Okuno, Y. Masumoto, M. Ikezawa, T. Ogawa, and A. A. Lipovskii, Appl. Phys. Lett. 77, 504 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Yu. Leonov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations