Advertisement

Optics and Spectroscopy

, Volume 109, Issue 1, pp 85–96 | Cite as

Studying the possibility of extracting material parameters from reflection and transmission coefficients of plane wave for multilayer metamaterials based on metal nanogrids

  • P. A. BelovEmail author
  • E. A. Yankovskaya
  • I. V. Melchakova
  • C. R. Simovski
Condensed-Matter Spectroscopy

Abstract

To more adequately extract the effective refractive index and other so-called metamaterial parameters from the reflection and transmission coefficients of a wave for multilayer grid nanostructures in the near-IR spectral range, the Nicholson-Ross-Weir method was modified. The rate of convergence of each extracted metamaterial parameter to a certain limit is studied with increasing number of layers of the structure. For each frequency of the light field, this limit is obviously equal to the value of the parameter that corresponds to an infinite number of layers. The effect of a separation layer of a dielectric between pairs of grids on the convergence rate of extracted parameters is studied. Bulk electrodynamic parameters of the structure are discussed.

Keywords

Material Parameter Magnetic Permeability Visible Spectral Range Negative Refractive Index Optical Frequency Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  2. 2.
    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000).CrossRefADSGoogle Scholar
  3. 3.
    D. R. Smith and N. Knoll, Phys. Rev. Lett. 85, 2933 (2000).CrossRefADSGoogle Scholar
  4. 4.
    C. Caloz, C. C. Chang, and T. Itoh, J. Appl. Phys. 11(11), 5483 (2001).CrossRefADSGoogle Scholar
  5. 5.
    R. W. Ziolkowski and E. Heyman, Phys. Rev. E 64, 056625 (2001).CrossRefADSGoogle Scholar
  6. 6.
    R. W. Ziolkowski, IEEE Trans. Antennas Propag. 51, 1516 (2003).CrossRefADSGoogle Scholar
  7. 7.
    C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).CrossRefADSGoogle Scholar
  8. 8.
    V. G. Veselago, 92(3), 517 (1967).Google Scholar
  9. 9.
    D. V. Sivukhin, Opt. Spektrosk. 3(2), 308 (1957).Google Scholar
  10. 10.
    L. I. Mandelstam, Zh. Éksp. Teor. Fiz. 15, 475 (1945).MathSciNetGoogle Scholar
  11. 11.
    V. E. Pafomov, Zh. Éksp. Teor. Fiz. 36, 1853 (1959).Google Scholar
  12. 12.
    V. E. Pafomov, Zh. Éksp. Teor. Fiz. 30, 761 (1956).Google Scholar
  13. 13.
    J. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  14. 14.
    Theory and Phenomena of Metamaterials, Ed. by F. Capolino (CRC Press, New York, 2009).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 3rd ed. (Nauka, Moscow, 1992; Pergamon, New York, 1984).Google Scholar
  16. 16.
    S. Tretyakov, Metamaterials 1, 40 (2007).CrossRefADSGoogle Scholar
  17. 17.
    X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).CrossRefADSGoogle Scholar
  18. 18.
    S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, Opt. Expr. 13, 4922 (2005).CrossRefADSGoogle Scholar
  19. 19.
    S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).CrossRefADSGoogle Scholar
  20. 20.
    S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, J. Opt. Soc. Am. B 23, 434 (2006).CrossRefADSGoogle Scholar
  21. 21.
    G. Dolling, M. Wegener, C. Enkrich, and S. Linden, Opt. Lett. 31, 1800 (2006).CrossRefADSGoogle Scholar
  22. 22.
    V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).CrossRefADSGoogle Scholar
  23. 23.
    G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).CrossRefADSGoogle Scholar
  24. 24.
    G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).CrossRefADSGoogle Scholar
  25. 25.
    C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, Opt. Lett. 34, 1603 (2009).CrossRefADSGoogle Scholar
  26. 26.
    A. M. Bratkovski, A. Cano, and A. P. Levanyuk, Appl. Phys. Lett. 87, 103507 (2005).CrossRefADSGoogle Scholar
  27. 27.
    R. Marques and J. Baena, Microwave Opt. Technol. Lett. 41, 290 (2004).CrossRefGoogle Scholar
  28. 28.
    Z. Liu, H. Lee, Y. Xiong, C. Sung, and X. Zhang, Science 315, 1686 (2007).CrossRefADSGoogle Scholar
  29. 29.
    I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315(5819), 1699 (2007).CrossRefADSGoogle Scholar
  30. 30.
    L. A. Vaĭnshteĭn, Usp. Fiz. Nauk 118, 339 (1976).Google Scholar
  31. 31.
    M. Wegener, private communication.Google Scholar
  32. 32.
    V. M. Shalaev, Nat. Photonics 1, 41 (2007).CrossRefADSGoogle Scholar
  33. 33.
    J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    C. R. Simovski, Opt. Spektrosk. 107(4), 623 (2009).Google Scholar
  35. 35.
    R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, Phys. Rev. B 79, 075 425 (2009).CrossRefGoogle Scholar
  36. 36.
    S. Zhang, W. Fan, N. C. Panoiu, K. Malloy, R. M. Osgood, and S. R. J. Brueck, Opt. Expr. 14, 6778 (2006).CrossRefADSGoogle Scholar
  37. 37.
    C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and H. Giessen, Phys. Rev. B 77, 035 126 (2008).CrossRefGoogle Scholar
  38. 38.
    G. Dolling, M. Wegener, and S. Linden, Opt. Lett. 32, 551 (2007).CrossRefADSGoogle Scholar
  39. 39.
    C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, Phys. Rev. B 77, 195328 (2008).CrossRefADSGoogle Scholar
  40. 40.
    C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, Phys. Rev. B 78, 155102 (2008).CrossRefADSGoogle Scholar
  41. 41.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).CrossRefADSGoogle Scholar
  42. 42.
    J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Photon. Nanostr. Fund. Appl. 6, 96 (2008).CrossRefADSGoogle Scholar
  43. 43.
    R. Marqués, L. Jelinek, F. Mesa, and F. Medina, Opt. Expr. 17, 11582 (2009).CrossRefADSGoogle Scholar
  44. 44.
    X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Jr., Phys. Rev. E 70, 016608 (2004).CrossRefADSGoogle Scholar
  45. 45.
    D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).CrossRefADSGoogle Scholar
  46. 46.
    C. R. Simovski and S. A. Tretyakov, Phys. Rev. B 75, 195111 (2007).CrossRefADSGoogle Scholar
  47. 47.
    C. R. Simovski, Metamaterials 1, 62 (2007).CrossRefADSGoogle Scholar
  48. 48.
    C. R. Simovski, Metamaterials 2, 169 (2008).CrossRefADSGoogle Scholar
  49. 49.
    C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. A. Azad, and A. J. Taylor, Metamaterials 3, 100 (2009).CrossRefADSGoogle Scholar
  50. 50.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. A. Belov
    • 1
    • 3
    Email author
  • E. A. Yankovskaya
    • 1
  • I. V. Melchakova
    • 1
  • C. R. Simovski
    • 1
    • 2
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Helsinki University of TechnologyHelsinkiFinland
  3. 3.Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations