Advertisement

Optics and Spectroscopy

, Volume 108, Issue 6, pp 999–1001 | Cite as

Holograms in CaF2 crystals with high content of alkaline impurities

  • A. S. Shcheulin
  • A. E. Angervaks
  • D. A. Abdu
  • A. I. Ryskin
Holography

Abstract

Similarities and dissimilarities of holograms recorded in fluorite crystals with color centers that are pure or contain relatively high concentrations of an alkaline impurity (sodium) are considered. It is shown that, in these two cases, the mechanism of recording is the same, but formation of the impurity-vacancy complexes in heavily doped crystals causes certain peculiarities in the types of color centers in the initial crystals and those with holograms and determines specific features of spatial redistribution of centers in the process of recording. These features reduce the diffraction efficiency of holograms in heavily doped crystals compared to pure and weakly activated crystals.

Keywords

Color Center Diffraction Efficiency Anionic Vacancy Interference Field Spatial Redistribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Shcheulin, A. K. Kupchikov, and A. I. Ryskin, Opt. Spektrosk. 103(3), 496 (2007) [Opt. Spectrosc. 103 (3), 507 (2007)].CrossRefGoogle Scholar
  2. 2.
    A. S. Shcheulin, A. K. Kupchikov, A. E. Angervaks, and A. I. Ryskin, Opt. Spektrosk. 103(4), 664 (2007) [Opt. Spectrosc. 103 (4), 660 (2007)].ADSGoogle Scholar
  3. 3.
    A. S. Shcheulin, A. V. Veniaminov, Yu. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, Opt. Spektrosk. 103(4), 668 (2007) [Opt. Spectrosc. 103 (4), 660 (2007)].Google Scholar
  4. 4.
    A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, Opt. Spektrosk. 104(6), 1028 (2008) [Opt. Spectrosc. 104 (6), 935 (2008)].CrossRefGoogle Scholar
  5. 5.
    A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, Opt. Spektrosk. 107(6), 1029 (2009) [Opt. Spectrosc. 107 (6), 1000 (2009)].CrossRefGoogle Scholar
  6. 6.
    A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, Opt. Spektrosk. 103(4), 673 (2007) [Opt. Spectrosc. 103 (4), 660 (2007)].Google Scholar
  7. 7.
    V. M. Belous, V. E. Mandel’, A. Yu. Popov, and A. V. Tyu-rin, Opt. Spektrosk. 87(2), 327 (1999) [Opt. Spectrosc. 87 (2), 6999 (1999)].Google Scholar
  8. 8.
    D. A. Vladimirov, V. E. Mandel’, A. Yu. Popov, and A. V. Tyurin, Opt. Spektrosk. 99(1), 147 (2005) [Opt. Spectrosc. 99 (1), 137 (2005)].CrossRefGoogle Scholar
  9. 9.
    V. A. Arkhangel’skaya and A. S. Shcheulin, Opt. Spek-trosk. 50(6), 1142 (1981).Google Scholar
  10. 10.
    R. Alcalá, V. M. Orera, and J. Beamonte, Phys. Stat. Sol. (b) 85(1), 283 (1978).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Shcheulin
    • 1
  • A. E. Angervaks
    • 1
  • D. A. Abdu
    • 1
  • A. I. Ryskin
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations