Optics and Spectroscopy

, Volume 108, Issue 2, pp 288–296

Continuous-variable quantum information processing with squeezed states of light

  • H. Yonezawa
  • A. Furusawa
Quantum Informatics. Quantum Information Processors

Abstract

We investigate experiments of continuous-variable quantum information processing based on the teleportation scheme. Quantum teleportation, which is realized by a two-mode squeezed vacuum state and measurement-and-feedforward, is considered as an elementary quantum circuit as well as quantum communication. By modifying ancilla states or measurement-and-feedforwards, we can realize various quantum circuits which suffice for universal quantum computation. In order to realize the teleportation-based computation we improve the level of squeezing, and fidelity of teleportation. With a high-fidelity teleporter we demonstrate some advanced teleportation experiments, i.e., teleportation of a squeezed state and sequential teleportation of a coherent state. Moreover, as an example of the teleportation-based computation, we build a QND interaction gate which is a continuous-variable analog of a CNOT gate. A QND interaction gate is constructed only with ancillary squeezed vacuum states and measurement-and-feedforwards. We also create continuous-variable four mode cluster type entanglement for further application, namely, one-way quantum computation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables (Kluwer, Dordrecht, 2003).MATHGoogle Scholar
  2. 2.
    S.L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).CrossRefADSGoogle Scholar
  3. 3.
    Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Opt. Lett. 15, 4321 (2007).Google Scholar
  4. 4.
    H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 100, 033602 (2008).CrossRefADSGoogle Scholar
  5. 5.
    S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters Phys. Rev. Lett. 70, 1895 (1993).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    L. Vaidman, Phys. Rev. A 49, 1473 (1994).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).CrossRefADSGoogle Scholar
  9. 9.
    D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).CrossRefADSGoogle Scholar
  10. 10.
    X. Zhou, D. W. Leung, and I. L. Chuang, Phys. Rev. A 62, 052316 (2000).CrossRefADSGoogle Scholar
  11. 11.
    S. D. Bartlett and W. J. Munro, Phys. Rev. Lett. 90, 117901 (2003).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).CrossRefADSGoogle Scholar
  13. 13.
    N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).CrossRefADSGoogle Scholar
  14. 14.
    N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett. 101, 130501 (2008).CrossRefADSGoogle Scholar
  15. 15.
    P. van Loock, J. Opt. Soc. Am. B 24, 340 (2007).CrossRefADSGoogle Scholar
  16. 16.
    D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).CrossRefADSGoogle Scholar
  17. 17.
    R. Filip, P. Marek, and U. L. Andersen, Phys. Rev. A 71, 042308 (2005).CrossRefADSGoogle Scholar
  18. 18.
    J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U.L. Andersen, and A. Furusawa, Phys. Rev. A 76, 060301R (2007).CrossRefADSGoogle Scholar
  19. 19.
    J. Yoshikawa, Y. Miwa, A. Huck, U.L. Andersen, P. van Loock, and A. Furusawa, Phys. Rev. Lett. 101, 250501 (2008).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A 78, 012301 (2008).CrossRefADSGoogle Scholar
  21. 21.
    N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, Phys. Rev. A 76, 010302 (2007).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    H. Zaidi, N. C. Menicucci, S.T. Flammia, R. Bloomer, M. Pysher, and O. Pfister, Las. Phys. 18, 659 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).CrossRefADSGoogle Scholar
  24. 24.
    W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, Hans-A. Bachor, T. Symul, and P.K. Lam, Phys. Rev. A 67, 032302 (2003).CrossRefADSGoogle Scholar
  25. 25.
    T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, Phys. Rev. A 67, 033802 (2003).CrossRefADSGoogle Scholar
  26. 26.
    N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, Phys. Rev. Lett. 94, 220502 (2005).CrossRefADSGoogle Scholar
  27. 27.
    H. Yonezawa, S. L. Braunstein, and A. Furusawa, Phys. Rev. Lett. 99, 110503 (2007).CrossRefADSGoogle Scholar
  28. 28.
    M. Yukawa, H. Benichi, and A. Furusawa, Phys. Rev. A 77, 022314 (2008).CrossRefADSGoogle Scholar
  29. 29.
    S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000).MathSciNetADSGoogle Scholar
  30. 30.
    K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Phys. Rev. Lett. 94, 150503 (2005).CrossRefADSGoogle Scholar
  31. 31.
    H. Yonezawa, A. Furusawa, and P. van Loock, Phys. Rev. A 76, 032305 (2007).CrossRefADSGoogle Scholar
  32. 32.
    U. Leonhardst, Measuring the Quantum State of Light (Cambridge Univ. Press, Cambridge, 1997).Google Scholar
  33. 33.
    G. Breitenbach and S. Schiller, J. Mod. Opt. 44, 2207 (1997).ADSGoogle Scholar
  34. 34.
    S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Memoto, Phys. Rev. Lett. 88, 097904 (2002).CrossRefADSGoogle Scholar
  35. 35.
    M. J. Holland, M. J. Collett, and D. F. Walls, Phys. Rev. A 42, 2995 (1990).CrossRefADSGoogle Scholar
  36. 36.
    Hans-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, New York, 2004).Google Scholar
  37. 37.
    L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).CrossRefADSGoogle Scholar
  38. 38.
    R. Simon, Phys. Rev. Lett. 84, 2726 (2000).CrossRefADSGoogle Scholar
  39. 39.
    P. van Loock, C. Weedbrook, and M. Gu, Phys. Rev. A 76, 032321 (2007).CrossRefADSGoogle Scholar
  40. 40.
    P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • H. Yonezawa
    • 1
    • 2
  • A. Furusawa
    • 1
    • 2
  1. 1.Department of Applied Physics, School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Japan Science and Technology (JST) AgencyCRESTTokyoJapan

Personalised recommendations