Optics and Spectroscopy

, Volume 108, Issue 2, pp 282–287 | Cite as

Quantum algorithms in one-way quantum computation

  • G. Vallone
  • F. De Martini
  • P. MataloniEmail author
Quantum Informatics. Quantum Information Processors


Cluster states are the fundamental resource for the one-way model of quantum computation. In this paper we show the realization of a two-photon four-qubit cluster state. The qubits are encoded in the polarization and the linear momentum of the particles. By using this state we realized two important quantum algorithms, namely the Grover’s search and the Deutsch’s algorithm.


Cluster State Single Qubit Logical Qubits Hadamard Gate Physical Qubits 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Shor, in Proceedings of the 35 Annual Symposium on Foundations of Computer Science (IEEE Press, 1994), pp. 124–134.Google Scholar
  2. 2.
    L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).CrossRefADSGoogle Scholar
  3. 3.
    L. K. Grover, Phys. Rev. Lett. 79, 4709 (1997).CrossRefADSGoogle Scholar
  4. 4.
    D. Deutsch and R. Jozsa, Proc. R. Soc. (London) A 439, 553 (1992).zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).CrossRefADSGoogle Scholar
  6. 6.
    R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).CrossRefADSGoogle Scholar
  7. 7.
    P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature 434, 169 (2005).CrossRefADSGoogle Scholar
  8. 8.
    R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, Nature 445, 65 (2007).CrossRefADSGoogle Scholar
  9. 9.
    C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, Nature Phys. 3, 91 (2007).CrossRefADSGoogle Scholar
  10. 10.
    Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. Lett. 100, 210501 (2008).CrossRefADSGoogle Scholar
  11. 11.
    G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, Phys. Rev. Lett. 98, 180502 (2007).CrossRefADSGoogle Scholar
  12. 12.
    G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, Phys. Rev. Lett. 100, 160502 (2008).CrossRefADSGoogle Scholar
  13. 13.
    K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, Phys. Rev. Lett. 99, 120503 (2007).CrossRefADSGoogle Scholar
  14. 14.
    G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, Phys. Rev. A (in press).Google Scholar
  15. 15.
    M. S. Tame, R. Prevedel, M. Paternostro, P. Bohi, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomaItaly
  2. 2.Dipartimento di FisicaUniversità Sapienza di RomaRomaItaly
  3. 3.Accademia Nazionale dei LinceiRomaItaly
  4. 4.Istituto Nazionale di Ottica Applicata (INOA-CNR)FlorenceItaly

Personalised recommendations