Optics and Spectroscopy

, Volume 108, Issue 1, pp 51–58 | Cite as

Spectral manifestation of collective plasma oscillations quasi-resonant to eigenfrequencies of individual nanoparticles in a silver Island film

Condensed-Matter Spectroscopy
  • 31 Downloads

Abstract

A doublet is revealed in the light extinction spectrum of a thin silver island film and the explanation of its nature is proposed. Based on the electron microscopy data, it is found that the doublet cannot be formed only by intrinsic resonances of individual islands. Because of interisland interactions, light can excite collective fields localized near the film. Resonant frequencies of these localized modes depend on the size, concentration, and arrangement of individual islands, whose plasma oscillation frequencies differ only slightly from one another.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Wenzel, J. Bosbach, A. Goldmann, et al., Appl. Phys. B 69, 513 (1999).CrossRefADSGoogle Scholar
  2. 2.
    T. Wenzel, J. Bosbach, F. Stietz, and F. Trager, Surf. Sci. 432, 257 (1999).CrossRefADSGoogle Scholar
  3. 3.
    F. Stietz, Appl. Phys. A 72, 381 (2001).CrossRefADSGoogle Scholar
  4. 4.
    K. L. Kelly, E. Coronado, Zhao Lin Lin, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
  5. 5.
    Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982) [in Russian].Google Scholar
  6. 6.
    D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1985), pp. 350–356.Google Scholar
  7. 7.
    W. Rechberger, A. Hohenau, A. Leitner, et al., Opt. Commun. 220, 137 (2003).CrossRefADSGoogle Scholar
  8. 8.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).Google Scholar
  9. 9.
    S. V. Perminov, S. G. Rautian, and V. P. Safonov, Opt. Spektrosk. 95(3), 447 (2003).CrossRefGoogle Scholar
  10. 10.
    B. N. J. Person and A. Liebsch, Phys. Rev. B 28(8), 4247 (1983).CrossRefADSGoogle Scholar
  11. 11.
    A. Lebedev, O. Stenzel, M. Quinten, et al., J. Opt. A 1, 573 (1999).ADSGoogle Scholar
  12. 12.
    M. Quinten, Appl. Phys. B 73, 245 (2001).CrossRefADSGoogle Scholar
  13. 13.
    B. N. Khlebtsov, V. A. Khanandeev, and N. G. Khlebtsov, Opt. Spektrosk. 104(2), 324 (2008).Google Scholar
  14. 14.
    J. Ziman, Models of Disorder (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).Google Scholar
  15. 15.
    T. A. Vartanyan, N. B. Leonov, A. E. Logunov, A. V. Papko, S. G. Przhibel’skiĭ, and V. V. Khromov, Opt. Spektrosk. 104(6), 964 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations