Optics and Spectroscopy

, 107:846 | Cite as

Measurements of the diffusion coefficient of nanoparticles by selective plane illumination microscopy

  • I. V. Fedosov
  • I. S. Nefedov
  • B. N. Khlebtsov
  • V. V. Tuchin
Optics and Spectroscopy in Biomedical Investigations


A laser-based selective plane illumination microscope is developed for the visualization of polystyrene nanospheres about 100 nm in diameter in water at a distance more than 600 μm from microcell walls. The contrast and brightness of particle images are high enough to record them by a video camera with a frame rate of up to 60 frames per second without using an image intensifier. The diffusion coefficients of monodisperse polystyrene nanospheres obtained using this microscope and the image processing software developed by the authors are presented. The measured diffusion coefficients provide the possibility to determine nanosphere diameters with a relative error not exceeding 5%.


Particle Image Image Intensifier Total Internal Reflection Fluorescence Microscopy Intense Laser Beam Polystyrene Nanospheres 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. C. Gutierrez, M. L. Ferrer, P. Tartaj, and F. del Monte, Hybrid Nanocomposites for Nanotechnology, Ed. by L. Merhari (Springer, New York, 2009).Google Scholar
  2. 2.
    Nanobioelectronics for Electronics, Biology, and Medicine, Ed. by A. Offenhausser and R. Rinaldi (Springer Science + Business Media, New York, 2009).Google Scholar
  3. 3.
    Sh. Pouya, M. Koochesfahani, P. Snee, et al., Exp. Fluids 39, 784 (2005).CrossRefGoogle Scholar
  4. 4.
    P. E. Freudenthal, M. Pommer, C. D. Meinhart, and B. D. Piorek, Exp. Fluids 43, 525 (2007).CrossRefGoogle Scholar
  5. 5.
    A. R. Bausch and D. A. Weitz, J. Nanoparticle Research 4, 477 (2002).CrossRefGoogle Scholar
  6. 6.
    S. J. Oldenburg and D. A. Schultz, in Topics in Fluorescence Spectroscopy, Vol. 8. Radiative Decay Engineering, Ed. by Ch. D. Geddes and Y. R. Lakowicz (Springer, New York, 2005), p. 333.Google Scholar
  7. 7.
    L. R. Hirsch, A. M. Gobin, A. R. Lowery, et al., Ann. Biomed. Engin. 34, 15 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Csaki, F. Garwe, A. Steinbruck, et al., Nanoletters 7, 247 (2007).ADSGoogle Scholar
  9. 9.
    M. Everts, V. Saini, J. L. Leddon, et al., Nanoletters 6, 587 (2006).ADSGoogle Scholar
  10. 10.
    B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, et al., Nanotecnology 17(20), 5540 (2006).CrossRefGoogle Scholar
  11. 11.
    X. Tsampoula, K. Taguchi, T. Cizmar, et al., Opt. Express 16(21), 17007 (2008).CrossRefADSGoogle Scholar
  12. 12.
    J. S. Guasto, P. Huang, and K. S. Breuer, Exp. Fluids 41, 869 (2006).CrossRefGoogle Scholar
  13. 13.
    J. S. Guasto and K. Breuer, Exp. Fluids 45, 157 (2008).CrossRefGoogle Scholar
  14. 14.
    H. A. Houghton, I. A. Hasnain, and A. M. Donald, Eur. Phys. J. E 25, 119 (2008).CrossRefGoogle Scholar
  15. 15.
    S. K. Lai, D. E. O’Hanlon, S. Harrold, et al., Proc. Natl. Acad. Sci. USA 104, 1482 (2007).CrossRefADSGoogle Scholar
  16. 16.
    S. K. Lai, K. Hidab, S. T. Mana, et al., Biomaterials 28, 2876 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Ragan, H. Huang, P. So, and E. Gratton, J. Fluorescence 16(3), 325 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Siedentopf and R. Zsigmondy, Ann. der Physik 110, 1 (1903).Google Scholar
  19. 19.
    K. Greger and J. Swoger, Rev. Sci. Instrum. 78, 023705 (2007).CrossRefADSGoogle Scholar
  20. 20.
    P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).CrossRefADSGoogle Scholar
  21. 21.
    H.-U. Dodt, U. Leischner, A. Schierloh, et al., Nature Methods 4(4), 331 (2007).CrossRefGoogle Scholar
  22. 22.
    J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, Opt. Express 16(10), 7142 (2008).CrossRefADSGoogle Scholar
  23. 23.
    I. V. Fedosov, I. S. Nefedov, B. N. Khlebtsov, and V. V. Tuchin, Kvantovaya Élektron. (Moscow) 38(6), 530 (2008).CrossRefGoogle Scholar
  24. 24.
    H. G. Merkus, Particle Size Measurements (Springer Science + Business Media, New York, 2009), Vol. V.Google Scholar
  25. 25.
    S. T. Wereley and C. D. Meinhart, in Microscale Diagnostic Techniques, Ed. by K. S. Breuer (Springer, Berlin, Heidelberg, New York, 2005), p. 51.CrossRefGoogle Scholar
  26. 26.
    A. Einstein, Theory of Brownian Movement (Dover, New York, 1905).Google Scholar
  27. 27.
    V. Breedveld, D. Ende, and A. T. A. Acrivos, J. Fluid Mech. 375, 297 (1998).zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Physical and Chemical Quantities a Concise Handbook, Ed. by A. A. Ravdel’ and A. M. Ponomareva (Khimiya, Leningrad, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. V. Fedosov
    • 1
  • I. S. Nefedov
    • 2
  • B. N. Khlebtsov
    • 3
  • V. V. Tuchin
    • 1
  1. 1.Chernyshevskii Saratov State UniversitySaratovRussia
  2. 2.SMARAD Department of Radio Science and EngineeringHelsinki University of Technology (TKK)TKKFinland
  3. 3.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations