Optics and Spectroscopy

, 107:726 | Cite as

Material parameters of metamaterials (a Review)

Physical Optics

Abstract

A theory of the homogenization of a certain class of metamaterials is stated. These metamaterials are volume lattices of electric and magnetic dipoles that are resonant with frequencies that are considerably lower than that of the first Bragg resonance of the lattice. It was shown that, for plates of a metamaterial, which are described by bulk material parameters, transition layers play an important role, and the known Drude notion of transition layers is significantly revised. The paper also discusses a more widespread method of determining the material parameters of metamaterials based on the extraction of the refractive index and the characteristic impedance from the scattering matrix of the plate of the metamaterial. The physical meaning of the material parameters obtained in this way is clarified, and the concept of Bloch lattices related to it is discussed. It is shown that the bulk material parameters and the parameters of transition layers can also be extracted from components of the scattering matrix of plates.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).Google Scholar
  2. 2.
    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984).Google Scholar
  3. 3.
    Artificial Materials Handbook, Vol. 1: Theory and Phenomena of Artificial Materials and Vol. 2: Applications of Artificial Materials, Ed. by F. Capolino (CRC Pr I Llc Publishers, New York, 2009).Google Scholar
  4. 4.
    A. K. Sarychev and V. A. Shalaev, Electrodynamics of Metamaterials (World Sci., Singapore, 2007).MATHGoogle Scholar
  5. 5.
    G. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New York, 2006).Google Scholar
  6. 6.
    C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2006).Google Scholar
  7. 7.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).MATHGoogle Scholar
  8. 8.
    J. C. Slater, Insulators, Semiconductors, and Metals (McGraw-Hill, New York, 1967; Mir, Moscow, 1969).Google Scholar
  9. 9.
    A. P. Vinogradov, Electrodynamics of Composite Materials (Izd-vo URSS, Moscow, 2001) [in Russian].Google Scholar
  10. 10.
    S. L. Adler, Phys. Rev. 126, 413 (1962).MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow 1973).Google Scholar
  12. 12.
    J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1998).Google Scholar
  13. 13.
    J. Schwinger, L. L. De-Raad, K. Milton, and W. Tsai, Classical Electrodynamics (Perseus Books, Reading, 1998).Google Scholar
  14. 14.
    S. M. Rytov, Zh. éksp. Teor. Fiz. 29, 605 (1955).Google Scholar
  15. 15.
    M. R. Phipott, J. Chem. Phys. 65, 3599 (1976).CrossRefADSGoogle Scholar
  16. 16.
    A. P. Vinogradov, A. V. Dorofeenko, and S. Zukhdi, Usp. Fiz. Nauk 178, 510 (2008).Google Scholar
  17. 17.
    J. Sipe and J. V. Kranendonk, Phys. Rev. A 9, 1806 (1974).CrossRefADSGoogle Scholar
  18. 18.
    X. Chen, T. Grzegorczyk, B.-E. Wu, et al., Phys. Rev. E 70, 16608 (2004).CrossRefADSGoogle Scholar
  19. 19.
    C. R. Simovski and S. A. Tretyakov, Phys. Rev. B 75, 195111 (2007).CrossRefADSGoogle Scholar
  20. 20.
    C. R. Simovski, Metamaterials 1, 62 (2007).CrossRefADSGoogle Scholar
  21. 21.
    C. R. Simovski, Metamaterials 2, 342 (2008).CrossRefGoogle Scholar
  22. 22.
    G. S. Agarwal, D. N. Pattanayak, and E. Wolf, Phys. Rev. B 10, 1447 (1974).CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Heidelberg, 2005).Google Scholar
  24. 24.
    N. Nilius, N. Ernst, and H.-J. Freund, Phys. Rev. Lett. 84, 3994 (2000).CrossRefADSGoogle Scholar
  25. 25.
    P. Ewald, Ann. Phys. 64, 2943 (1921).Google Scholar
  26. 26.
    P. Ewald, ZS f. Kristallen 54, 129 (1921).Google Scholar
  27. 27.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 26, 269 (1956).Google Scholar
  28. 28.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 18, 976 (1948).Google Scholar
  29. 29.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 21, 267 (1951).Google Scholar
  30. 30.
    G. Mahan and G. Obermair, Phys. Rev. 183, 834 (1969).CrossRefADSGoogle Scholar
  31. 31.
    I. E. Tamm, The Principles of Electricity Theory, 10th ed. (Nauka, Moscow, 1989) [in Russian].Google Scholar
  32. 32.
    F. Bloch, Z. Phys. 52, 555 (1929).CrossRefADSGoogle Scholar
  33. 33.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed. (McGraw-Hill, New York, 1968; Nauka, Moscow, 1978).Google Scholar
  34. 34.
    D. R. Smith and D. Shurig, Phys. Rev. Lett. 90, 77405 (2003).CrossRefADSGoogle Scholar
  35. 35.
    P. A. Belov and C. R. Simovski, Phys. Rev. E 72, 26615 (2005).CrossRefADSGoogle Scholar
  36. 36.
    J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. MTT 47, 2075 (1999).CrossRefGoogle Scholar
  37. 37.
    J. B. Pendry and D. R. Smith, Phys. Today 57, 37 (2004).CrossRefGoogle Scholar
  38. 38.
    B. Sauviac, C. Simovski, and S. Tretyakov, Electromagnetics 24, 317 (2004).CrossRefGoogle Scholar
  39. 39.
    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  40. 40.
    C. Simovski, P. A. Belov, and S. He, IEEE Trans. Antennas Propag. 51, 2582 (2003).CrossRefADSGoogle Scholar
  41. 41.
    C. Simovski and B. Sauviac, Phys. Rev. E 70, 46607 (2004).CrossRefADSGoogle Scholar
  42. 42.
    H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Dover Publications, New York, 1952).Google Scholar
  43. 43.
    H. A. Lorentz, Proc. Acad. Sci. Amsterdam 13, 92 (1910).Google Scholar
  44. 44.
    I. I. Sobel’man, Usp. Fiz. Nauk 172, 85 (2002).CrossRefGoogle Scholar
  45. 45.
    F. Reiche, Ann. Phys. 70, 7 (1916).Google Scholar
  46. 46.
    H. Faxen, Z. Phys. 2, 218 (1920).CrossRefADSGoogle Scholar
  47. 47.
    G. Darwin, Trans. Cambridge Soc. 23, 137 (1924).Google Scholar
  48. 48.
    B. A. Sotskiĭ and F. I. Fedorov, Opt. Spektrosk. 4(2), 365 (1958).Google Scholar
  49. 49.
    K. R. Simovskiĭ, Weak Spatial Dispersion in Composite Media (Politekhnika, St. Petersburg, 2003) [in Russian].Google Scholar
  50. 50.
    K. R. Simovskiĭ, Radiotekh. Elektron. (Moscow) 52, 1031 (2007).Google Scholar
  51. 51.
    P. Drude, Wied. Ann. 43, 146 (1891).Google Scholar
  52. 52.
    C. Maclaurin, Proc. Roy. Soc. (London), Ser. A 76, 149 (1905).Google Scholar
  53. 53.
    P. K. L. Drude, Theory of Optics (Longmans, London, 1902; ONTI, Moscow, 1935).Google Scholar
  54. 54.
    C. Strachan, Proc. Camb. Phil. Soc. 29, 116 (1933).CrossRefGoogle Scholar
  55. 55.
    D. W. Rayleigh, Phil. Mag. 33, 1 (1892).Google Scholar
  56. 56.
    C. V. Raman and L. A. Ramdas, Philos. Mag. 3, 220 (1927).Google Scholar
  57. 57.
    C. V. Raman and L. A. Ramdas, Proc. Roy. Soc. (London), Ser. A 108, 561 (1925).CrossRefADSGoogle Scholar
  58. 58.
    O. S. Heavens, Optical Properties of Thin Solid Films (Dover Publications, New York, 1991).Google Scholar
  59. 59.
    I. E. Tamm, Z. Phys. 76, 849 (1932).CrossRefADSGoogle Scholar
  60. 60.
    W. Shockley, Phys. Rev. 56, 317 (1939).MATHCrossRefADSGoogle Scholar
  61. 61.
    C. R. Simovski, S. He, and M. Popov, Phys. Rev. B 62, 13718 (2000).CrossRefADSGoogle Scholar
  62. 62.
    C. R. Simovski and B. Sauviac, Eur. Phys. J. 17, 11 (2002).Google Scholar
  63. 63.
    A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bianisotropic Materials: Theory and Applications (Gordon and Breach Publishers, Amsterdam, 2003).Google Scholar
  64. 64.
    D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, Phys. Rev. B 64, 134205 (2002).CrossRefADSGoogle Scholar
  65. 65.
    I. El-Kady, M. M. Sigalas, R. Biswas, et al., Phys. Rev. B 62, 15299 (2000).CrossRefADSGoogle Scholar
  66. 66.
    D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, Phys. Rev. B 65, 195104 (2002).CrossRefADSGoogle Scholar
  67. 67.
    S. O’Brien and J. B. Pendry, J. Phys.: Condens. Matter 14, 6383 (2002).CrossRefADSGoogle Scholar
  68. 68.
    S. O’Brien and J. B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).CrossRefADSGoogle Scholar
  69. 69.
    D. R. Smith, P. Kolinko, and D. Schuring, J. Opt. Soc. Am. B 21, 1032 (2004).CrossRefADSGoogle Scholar
  70. 70.
    K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, Appl. Phys. Lett. 85, 543 (2004).CrossRefADSGoogle Scholar
  71. 71.
    S. O’Brien, Artificial Magnetic Structures, PhD Thesis (Imperial College of Science, Technology and Medicine, 2002).Google Scholar
  72. 72.
    T. Koschny, L. Zhang, and C. M. Soukoulis, Phys. Rev. B 71, 121103 (2005).CrossRefADSGoogle Scholar
  73. 73.
    T. Koschny, P. Markos, D. R. Smith, and C. M. Souloulis, Phys. Rev. E 68, 65602 (2003).CrossRefADSGoogle Scholar
  74. 74.
    N. Katsarakis, G. Konstantinidis, and A. Kostopoulos, Opt. Lett. 30, 1348 (2005).CrossRefADSGoogle Scholar
  75. 75.
    S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).CrossRefADSGoogle Scholar
  76. 76.
    N. Katsarakis, T. Koschny, M. Kafesaki, et al., Phys. Rev. B 70, 201101 (2004).CrossRefADSGoogle Scholar
  77. 77.
    T. Koschny, P. Markos, E. N. Economou, et al., Phys. Rev. B 71, 245105 (2005).CrossRefADSGoogle Scholar
  78. 78.
    G. Dolling, M. Wegener, C. Enkrich, et al., Opt. Lett. 30, 3198 (2005).CrossRefADSGoogle Scholar
  79. 79.
    N. Katsarakis, T. Koschny, M. Kafesaki, et al., Appl. Phys. Lett. 84, 2943 (2004).CrossRefADSGoogle Scholar
  80. 80.
    T. J. Yen, W. J. Padilla, N. Fang, et al., Science 303, 1494 (2004).CrossRefADSGoogle Scholar
  81. 81.
    P. A. Belov and C. R. Simovski, Phys. Rev. B 73, 45102 (2006).CrossRefADSGoogle Scholar
  82. 82.
    D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B 23, 391 (2006).CrossRefADSGoogle Scholar
  83. 83.
    A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas. 17, 395 (1968).CrossRefGoogle Scholar
  84. 84.
    W. W. Weir, Proc. IEEE 62, 33 (1974).CrossRefGoogle Scholar
  85. 85.
    L. P. Ligthart, IEEE Trans. Microw. Theory Tech. 31, 249 (1983).CrossRefADSGoogle Scholar
  86. 86.
    J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, IEEE Trans. Microw. Theory Tech. 38, 1096 (1990).CrossRefGoogle Scholar
  87. 87.
    S. A. Tretyakov, Analytical Modelling in Applied Electromagnetics (Artech House, Norwood, 2003).Google Scholar
  88. 88.
    G. Dolling, C. Enkrich, and M. Wegener, Science 312, 892 (2006).CrossRefADSGoogle Scholar
  89. 89.
    S. L. Prosvirnin and S. Zouhdi, J. Electromagn. Waves Appl. 20, 583 (2006).CrossRefGoogle Scholar
  90. 90.
    U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, Opt. Express 30, 7872 (2006).CrossRefADSGoogle Scholar
  91. 91.
    G. Dolling, M. Wegener, and S. Linden, Opt. Lett. 32, 551 (2007).CrossRefADSGoogle Scholar
  92. 92.
    V. M. Shalaev, W. Cai, U. K. Chettiar, et al., Opt. Lett. 30, 3356 (2005).CrossRefADSGoogle Scholar
  93. 93.
    G. Dolling, C. Enkrich, M. Wegener, et al., Opt. Lett. 31, 1800 (2006).CrossRefADSGoogle Scholar
  94. 94.
    G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).CrossRefADSGoogle Scholar
  95. 95.
    J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Helsinki University of TechnologyHelsinkiFinland

Personalised recommendations