Optics and Spectroscopy

, Volume 107, Issue 2, pp 275–281

Subnanosecond spectrofluorimetry of new indolocarbazole derivatives in solutions and protein complexes and their dipole moments

  • N. A. Nemkovich
  • Yu. V. Kruchenok
  • A. N. Sobchuk
  • H. Detert
  • N. Wrobel
  • E. A. Chernyavskiĭ
Condensed-Matter Spectroscopy

Abstract

The spectral and temporal characteristics of new 6,12-dimethoxyindolo[3,2-b]carbazole, 5,11-dimethyl-6,12-dimethoxyindolo[3,2-b]carbazole, and 5,11-dihexyl-6,12-di(hexyloxy)indolo[3,2-b]carbazole fluorescence probes in organic solvents and protein complexes are studied. The dipole moments of indolocarbazoles in 1,4-dioxane were measured by electrooptical absorption method. The measured dipole moments have values within the range of (3.1–3.6) × 10−30 C m in the equilibrium ground state and increase to (4.8–5.6) × 10−30 C m after excitation. The excited state lifetime of indolocarbazole derivatives increases with increasing polarity and viscosity of the environment. The binding of indolocarbazoles with trypsinogen and human serum albumin increases the fluorescence intensity, changes the intensity ratio of fluorescence bands, and increases the average excited state lifetime of indolocarbazoles. The analysis of the instantaneous fluorescence spectra and fluorescence decay parameters at different wavelengths revealed the existence of several types of probe binding sites in proteins. It is found that the fluorescence characteristics of indolocarbazole derivatives depend on the conformation rearrangements of trypsinogen due to its thermal denaturation.

PACS numbers

78.40.Dw 78.40.Me 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zimmermann, H. Wilts, M. Lenhardt, M. Hahn, and T. Mertens, Antiviral Research 48, 49 (2000).CrossRefGoogle Scholar
  2. 2.
    P. Moreau, M. Sancelme, C. Bailly, S. Leonce, A. Pierre, J. Hickman, B. Pfeiffer, and M. Prudhomme, Eur. J. Med. Chem. 36, 887 (2001).CrossRefGoogle Scholar
  3. 3.
    M. J. Slater, R. Baxter, R. W. Bonser, S. Cockerill, K. Gohil, N. Parry, E. Robinson, R. Randall, C. Yeates, W. Snowden, and A. Walters, Bio. Med. Chem. Lett. 11, 1993 (2001).CrossRefGoogle Scholar
  4. 4.
    G. Zhu, S. E. Conner, X. Zhou, C. Shih, T. Li, B. D. Anderson, H. B. Brooks, R. M. Campbell, E. Considine, J. A. Dempsey, M. M. Faul, C. Ogg, B. Patel, R. M. Schultz, C. D. Spencer, B. Teicher, and S. A. Watkins, J. Med. Chem. 46, 2027 (2003).CrossRefGoogle Scholar
  5. 5.
    R. S. Al-awar, J. E. Ray, K. A. Hecker, J. Huang, P. P. Waid, C. Shih, H. B. Brooks, C. D. Spencer, S. A. Watkins, B. Patel, N. B. Stamm, C. A. Ogg, R. M. Schultz, E. Considine, M. M. Faul K. A. Sullivan, S. P. Kolis, J. L. Grutsch, and S. Joseph, Bio. Med. Chem. Lett. 14, 3217 (2004).CrossRefGoogle Scholar
  6. 6.
    B. L. Staker, M. D. Feese, M. Cushman, Y. Pommier, D. Zembower, L. Stewart, A. B. Burgin, J. Med. Chem. 48, 2336 (2005).CrossRefGoogle Scholar
  7. 7.
    S. Roy, A. Eastman, and G. W. Gribble, Tetrahedron 62, 7838 (2006).CrossRefGoogle Scholar
  8. 8.
    C. Sanchez, C. Mendez, and J. A. Salas, J. Ind. Microbiol. Biotechnol. 33, 560 (2006).CrossRefGoogle Scholar
  9. 9.
    E. Labourier, F. Rossi, I. Gallouzi, and E. Allemand, Nucleic Acids Research 26, 2955 (1998).CrossRefGoogle Scholar
  10. 10.
    N. Wrobel, PhD Dissertation (Johannes Gutenberg-Universitat, Mainz, 2008).Google Scholar
  11. 11.
    D. Curiel, A. Cowley, and P. D. Beer, Chem. Commun., 236 (2005).Google Scholar
  12. 12.
    W. Baumann, Physical Methods of Chemistry (Wiley, New York, 1989), Vol. 3, p. 45.Google Scholar
  13. 13.
    N. A. Nemkovich and W. Baumann, J. Photochem. Photobiol. A 185, 26 (2007).CrossRefGoogle Scholar
  14. 14.
    D. A. Parul’, S. B. Bokut’, P. A. Kiselev, A. A. Milyutin, E. P. Petrov, N. A. Nemkovich, A. N. Sobchuk, and B. M. Dzhagarov, Biokhimiya 66, 481 (2001).Google Scholar
  15. 15.
    A. N. Terenin, Photonics of Dye Molecules and Related Organic Compounds (Nauka, Leningrad, 1967) [in Russian].Google Scholar
  16. 16.
    R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell, Harper’s Biochemistry (Appleton&Lange, Norwalk, 1990; Mir, Moscow, 1993).Google Scholar
  17. 17.
    C. Carrasco, H. Vezin, W. D. Wilson, J. Ren, and J. B. Chaires, Anti-Cancer Drug Design 16, 99 (2001).Google Scholar
  18. 18.
    C. Carrasco, M. Facompre, J. D. Chisholm, D. L. Van Vranken, W. D. Wilson, and C. Bailly, Nucleic Acids Research 30, 1774 (2002).CrossRefGoogle Scholar
  19. 19.
    G. E. Dobretsov, Fluorescent Probes in Study of Cells, Membranes, and Lipoproteins (Nauka, Moscow, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. A. Nemkovich
    • 1
  • Yu. V. Kruchenok
    • 1
  • A. N. Sobchuk
    • 1
  • H. Detert
    • 2
  • N. Wrobel
    • 2
  • E. A. Chernyavskiĭ
    • 3
  1. 1.Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Organic ChemistryJohannes Gutenberg UniversityMainzGermany
  3. 3.Research Institute of Physicochemical ProblemsBelarussian State UniversityMinskBelarus

Personalised recommendations