Optics and Spectroscopy

, Volume 107, Issue 2, pp 270–274 | Cite as

Energy levels of rare-earth ions in Gd2O2S

  • P. A. Rodnyĭ
Condensed-Matter Spectroscopy

Abstract

The energies of the ground 4fn levels of tri- and divalent rare-earth ions with respect to the conduction and valence bands of Gd2O2S crystal has been determined. It is shown that the Pr3+, Tb3+, and Eu3+ ions can be luminescence centers in Gd2O2S. The levels of the Nd3+, Dy3+, Er3+, Tm3+, Sm3+, and Ho3+ ions lie in the valence band; therefore, these ions cannot play the role of activators. The ground 4f level of the Ce3+ ion is near the midgap, due to which Ce3+ effectively captures holes from the valence band and electrons from the conduction band and significantly decreases the afterglow level of the Gd2O2S:Pr and Gd2O2S:Tb phosphors.

PACS numbers

78.55.Fv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Grabmaier, J. Lumin. 60/61, 967 (1994).CrossRefGoogle Scholar
  2. 2.
    L. H. Brixner, Mater. Chem. Phys. 16, 253 (1987).CrossRefGoogle Scholar
  3. 3.
    E. I. Gorokhova, V. A. Demidenko, S. B. Eron’ko, S. B. Mikhrin, P. A. Rodnyĭ, and O. A. Khristich, Opt. Zh. 72, 63 (2005).Google Scholar
  4. 4.
    J. Thirumalai, R. Chandramohan, R. Divakar, E. Mohandas, M. Sekar, and P. Parameswaran, Nanotecnology 19, 395703 (2008).Google Scholar
  5. 5.
    M. D. Faucher, R. Morlotti, and O. K. Moune, J. Lumin. 96, 37 (2002).CrossRefGoogle Scholar
  6. 6.
    R. Nakamura, J. Am. Ceram. Soc. 82, 2407 (2004).CrossRefGoogle Scholar
  7. 7.
    E. I. Gorokhova, V. A. Demidenko, S. B. Eron’ko, S. B. Mikhrin, P. A. Rodnyĭ, and O. A. Khristich, Opt. Zh. 73, 71 (2006).Google Scholar
  8. 8.
    C. W. Thiel, H. Cruguel, H. Wu, Y. Sun, G. J. Lapeyre, R. L. Cone, R. W. Equall, and R. M. Macfarlane, Phys. Rev. B 64, 085107 (2001).Google Scholar
  9. 9.
    P. Dorenbos, J. Lumin. 91, 155 (2000).CrossRefGoogle Scholar
  10. 10.
    P. Dorenbos, J. Lumin. 122/123, 315 (2007).CrossRefGoogle Scholar
  11. 11.
    P. Dorenbos and E. van der Kolk, Appl. Phys Lett. 89, 061121 (2006).Google Scholar
  12. 12.
    P. A. Rodnyĭ, I. V. Khodyuk, and G. B. Stryganyuk, Fiz. Tverd. Tela (St. Petersburg) 50, 1578 (2008) [Phys. Solid State 50, 1639 (2008)].Google Scholar
  13. 13.
    A. V. Sidorenko, A. J. J. Bos, P. Dorenbos, C. W. E. van Eijk, A. Kahn-Harari, P. A. Rodnyi, and B. Viana, Nucl. Instrum. Methods Phys. Res., Sect. A 537, 81 (2005).CrossRefADSGoogle Scholar
  14. 14.
    M. Ruakus, K. S. Mishra, C. Peters, P. C. Schmidt, K. H. Jonson, J. Choi, and U. Happek, J. Lumin. 87/89, 980 (2000).CrossRefGoogle Scholar
  15. 15.
    S. Yokono, T. Abe, and T. Hosina, J. Lumin. 24/25, 309 (1981).CrossRefGoogle Scholar
  16. 16.
    G. Blasse and G. J. Dirksen, J. Solid State Chem. 73, 599 (1988).CrossRefADSGoogle Scholar
  17. 17.
    E. J. Nakazawa and F. Shiga, Jpn. J. Appl. Phys. 42, 1642 (2003).CrossRefADSGoogle Scholar
  18. 18.
    E. Nakazawa, J. Lumin. 18/19, 272 (1979).CrossRefGoogle Scholar
  19. 19.
    R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, J. Lumin. 82, 93 (1999).CrossRefGoogle Scholar
  20. 20.
    W. M. Yen, D. Jia, L. Lu, and R. S. Meltzer, J. Lumin. 102/103, 333 (2003).CrossRefGoogle Scholar
  21. 21.
    Dongdong Jia, R. S. Meltzer, and W. M. Yen, Phys. Rev. 65, 235116 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. A. Rodnyĭ
    • 1
  1. 1.St. Petersburg State Technical UniversitySt. PetersburgRussia

Personalised recommendations