Optics and Spectroscopy

, Volume 107, Issue 2, pp 255–263 | Cite as

Multiphoton avalanche generation of free carriers in a multiband crystal

Condensed-Matter Spectroscopy

Abstract

A new mechanism for generating nonequilibrium electron-hole pairs in transparent wide-gap crystals under high-power picosecond light pulses of prebreakdown intensity is considered. The kinetics of free carrier generation is investigated by the numerical solution of the system of balance equations for particle concentrations within the multiband model of electron energy spectrum of the crystal. It is shown that in the intensity range of 1010–1012 W/cm2 the proposed way of nonequilibrium carrier generation is more effective in the case of picosecond pulses than the conventional multiphoton absorption. It is shown that the nonequilibrium carrier generation considered here may initiate a multiphoton avalanche.

PACS numbers

42.50.Hz 42.65.Sf 77.22.Jp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).CrossRefADSGoogle Scholar
  2. 2.
    B. C. Stuart, D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. B 53, 1749 (1996).CrossRefADSGoogle Scholar
  3. 3.
    M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. H. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).CrossRefADSGoogle Scholar
  4. 4.
    A. C. Tien, S. Backus, H. Kapteyn, M. Murname, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).CrossRefADSGoogle Scholar
  5. 5.
    F. Quere, S. Guizard, and Ph. Martin, Europhys. Lett. 56, 138 (2001).CrossRefADSGoogle Scholar
  6. 6.
    D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, Phys. Rev. Lett. 91, 107601 (2003).CrossRefADSGoogle Scholar
  7. 7.
    O. Efimov, S. Juodkazis, and H. Misawa, Phys. Rev. A 69, 042903 (2004).Google Scholar
  8. 8.
    S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, Appl. Phys. A 84, 413 (2006).CrossRefADSGoogle Scholar
  9. 9.
    J. Bonze, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, J. Appl. Phys. 103, 054910 (2008).Google Scholar
  10. 10.
    A. G. Molchanov, Fiz. Tverd. Tela (Leningrad) 12, 954 (1970) [Sov. Phys. Solid State 12, 749 (1970)].Google Scholar
  11. 11.
    E. Yablonovitch and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).CrossRefADSGoogle Scholar
  12. 12.
    A. S. Epifanov, Zh. Éksp. Teor. Fiz. 67, 1805 (1974) [Sov. Phys. JETP 40, 897 (1974)].Google Scholar
  13. 13.
    L. H. Holway and D. W. Fradin, J. Appl. Phys. 46, 279 (1975).CrossRefADSGoogle Scholar
  14. 14.
    A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, Zh. Éksp. Teor. Fiz. 70(3), 728 (1976) [Sov. Phys. JETP 43, 377 (1976)].Google Scholar
  15. 15.
    B. S. Sharma and K. E. Riekhof, Can. J. Phys. 45, 3781 (1967).ADSGoogle Scholar
  16. 16.
    A. Schmid, P. Kelly, and P. Braunlich, Phys. Rev. B 16(10), 4569 (1977).CrossRefADSGoogle Scholar
  17. 17.
    S. C. Jones, X. A. Shen, R. F. Braunlich, P. Kelly, and A. S. Epifanov, Phys. Rev. B 35, 894 (1987).CrossRefADSGoogle Scholar
  18. 18.
    S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, Opt. Eng. 28(10), 1039 (1989).ADSGoogle Scholar
  19. 19.
    E. Cartier, D. Arnold, D. J. Dimaria, M. V. Fischetti, P. Braunlich, S. C. Jones, X. A. Shen, R. T. Casper, and P. J. Kelly, Rev. Solid State Sci. 5, 531 (1991).Google Scholar
  20. 20.
    L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47(5), 1945 (1964) [Sov. Phys. JETP 20, 1307 (1964)].Google Scholar
  21. 21.
    B. Rethfeld, Phys. Rev. B 73, 035101 (2006).Google Scholar
  22. 22.
    T. Apostolova and Y. Hahn, J. Appl. Phys. 88, 1024 (2000).CrossRefADSGoogle Scholar
  23. 23.
    A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, Phys. Rev. B 61, 11437 (2000).CrossRefADSGoogle Scholar
  24. 24.
    S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, Appl. Phys. A 84, 413 (2006).CrossRefADSGoogle Scholar
  25. 25.
    A. Q. Wu, I. H. Chowdhury, and X. Xu, Phys. Rev. B 72, 085128 (2005).Google Scholar
  26. 26.
    T. Otobe, M. Yamagiwa, J.-I. Iwata, K. Yabana, T. Nakatsukasa, and G. F. Bertsch, Phys. Rev. B 77, 165104 (2008).CrossRefADSGoogle Scholar
  27. 27.
    M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).CrossRefADSGoogle Scholar
  28. 28.
    G. Petite, S. Guizard, Ph. Martin, and F. Quere, Phys. Rev. Lett. 83, 5182 (1999).CrossRefADSGoogle Scholar
  29. 29.
    D. H. Reitze, H. Ahn, and M. C. Downer, Phys. Rev. B 45, 2677 (1992).CrossRefADSGoogle Scholar
  30. 30.
    E. Yu. Perlin, A. V. Fedorov, and M. B. Kashevnik, Zh. Éksp. Teor. Fiz. 85(4), 1357 (1983) [Sov. Phys. JETP 58, 787 (1983)].Google Scholar
  31. 31.
    A. M. Danishevskiĭ, E. Yu. Perlin, and A. V. Fedorov, Zh. Éksp. Teor. Fiz. 93, 1319 (1987) [Sov. Phys. JETP 66, 747 (1987)].Google Scholar
  32. 32.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskiĭ, Izv. Ross. Akad. Nauk, Ser. Fiz. 69, 1129 (2005).Google Scholar
  33. 33.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskiĭ, Zh. Éksp. Teor. Fiz. 128, 411 (2005) [JETP 101, 357 (2005)].Google Scholar
  34. 34.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spektrosk. 100(1), 69 (2006) [Opt. Spectrosc. 100, 49 (2006)].CrossRefADSGoogle Scholar
  35. 35.
    V. A. Kovarskii and E. Yu. Perlin, Phys. Status Solidi B 45, 47 (1971).CrossRefGoogle Scholar
  36. 36.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spektrosk. 106(5), 756 (2009) [Opt. Spectrosc. 106, 685 (2009)].Google Scholar
  37. 37.
    E. Yu. Perlin, Zh. Éksp. Teor. Fiz. 78, 98 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Ivanov
    • 1
  • R. S. Levitskiĭ
    • 1
  • E. Yu. Perlin
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations