Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the use of the finite difference method in a calculation of vibration-rotation energies

  • 59 Accesses

Abstract

The use of the finite difference method to obtain a Taylor series expansion of a potential energy function for a subsequent calculation of the rovibration energies of molecules is considered. A method is proposed that allows the stability of a finite-difference scheme to be increased against the computational inaccuracy upon numerical expansion of a multidimensional potential energy function into a high-order Taylor series. The method is based on the successive elimination of calculated expansion coefficients of a higher order in calculating the lower-order coefficients by the finite difference method. The approach is illustrated for the example of the CO and H2S molecules.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. R. Bunker and R. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998).

  2. 2.

    D. Papoušek and M. R. Aliev, Molecular Rotational-Vibrational Spectra (Elsevier, Amsterdam, 1982).

  3. 3.

    D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002).

  4. 4.

    S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245(2), 126 (2007).

  5. 5.

    N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

  6. 6.

    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 2001) [in Russian].

  7. 7.

    K. Nakagawa and M. Akiyama, Chem. Phys. Lett. 190, 91 (1992).

  8. 8.

    O. L. Polyansky, P. Jensen, and J. Tennyson, J. Mol. Spectrosc. 178(2), 184 (1996).

  9. 9.

    L. E. Snyder and T. H. Edwards, J. Mol. Spectrosc. 31, 347 (1969).

  10. 10.

    J.-M. Flaud, C. Camy-Peyret, and J. W. C. Johns, Can. J. Phys. 61, 1462 (1983).

  11. 11.

    L. Lechuga-Fossat, J.-M. Flaud, C. Camy-Peyret, and J. W. C. Johns, Can. J. Phys. 62, 1889 (1984).

  12. 12.

    W. C. Lane, T. H. Edwards, J. R. Gillis, F. S. Bonomo, and F. J. Murcray, J. Mol. Spectrosc. 111(2), 320 (1985).

  13. 13.

    L. Lechuga-Fossat, J.-M. Flaud, C. Camy-Peyret, P. Arcas, and M. Cuisenier, Mol. Phys. 61(1), 23 (1987).

  14. 14.

    S. P. Belov, K. M. T. Yamada, G. Winnewisser, L. Poteau, R. Bocquet, J. Demaison, O. L. Polyansky, and M. Yu. Tretyakov, J. Mol. Spectrosc. 173(2), 380 (1995).

  15. 15.

    A. D. Bykov, O. V. Naumenko, M. A. Smirnov, L. N. Sinitsa, L. R. Brown, J. Crisp, and D. Crisp, Can. J. Phys. 72, 989 (1994).

Download references

Author information

Correspondence to R. I. Ovsyannikov.

Additional information

Original Russian Text © R.I. Ovsyannikov, P. Jensen, M.Yu. Tretyakov, S.N. Yurchenko, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 2, pp. 236–243.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ovsyannikov, R.I., Jensen, P., Tretyakov, M.Y. et al. On the use of the finite difference method in a calculation of vibration-rotation energies. Opt. Spectrosc. 107, 221–227 (2009). https://doi.org/10.1134/S0030400X09080104

Download citation

PACS numbers

  • 33.20.Tp