Optics and Spectroscopy

, Volume 105, Issue 6, pp 889–895 | Cite as

Formation of QD-porphyrin molecule complexes in aqueous solutions

  • A. O. Orlova
  • V. G. Maslov
  • A. A. Stepanov
  • I. Gounko
  • A. V. Baranov
Condensed-Matter Spectroscopy

Abstract

The spectral and luminescent manifestations of the electrostatic formation of quantum dot (QD)-porphyrin complexes are studied. The QD luminescence in these complexes is found to be efficiently quenched. The luminescence of molecules complexed with QDs is also partially quenched. The luminescence excitation spectra of porphyrin molecules associated with QDs exhibit a contribution of the QD absorption spectrum, which indicates that energy is transferred from QDs to porphyrin. The efficiency of the nonradiative resonant energy transfer from a QD to a porphyrin molecule is estimated. The observed experimental data agree well with a proposed model of formation of complexes of the QD-organic molecule type.

PACS numbers

78.67.He 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Parak, T. Pellegrino, and Ch. Plank, Nanotecnology 16, 9 (2005).CrossRefADSGoogle Scholar
  2. 2.
    U. L. Lao, A. Mulchandani, and W. Chen, J. Am. Chem. Soc. 128, 14756 (2006).Google Scholar
  3. 3.
    B. Cui, C. Wu, L. Chen, et al., Proc. Natl. Acad. Sci. USA 104, 13666 (2007).Google Scholar
  4. 4.
    K. Y. Kim, Nanomedicine 3(2), 103 (2007).Google Scholar
  5. 5.
    M. W. Yezhelyev, Al-Hajj, C. Morris, A. I. Marcus, et al., Adv. Mater. 19(20), 3146 (2007).CrossRefGoogle Scholar
  6. 6.
    K. E. Sapsford, Th. Pons, I. L. Medintz, and H. Mattoussi, Sensors 6, 925 (2006).CrossRefGoogle Scholar
  7. 7.
    K. Sato, K. Hosokawa, and M. Maeda, Anal. Sci. 23, 17 (2007).CrossRefGoogle Scholar
  8. 8.
    P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, et al., Chem. Phys. Lett. 424, 120 (2006).CrossRefADSGoogle Scholar
  9. 9.
    Ch. Xu, B. Xing, and J. Rao, Biochem. Biophys. Res. Commun. 344, 391 (2006).Google Scholar
  10. 10.
    E. Z. Chong, D. R. Matthews, H. D. Summers, et al., J. Biomed. Biotechnol, 7 (2007).Google Scholar
  11. 11.
    A. O. Orlova, V. G. Maslov, I. E. Skaletskaya, and A. V. Baranov, Opt. Spektrosk. 101(4), 618 (2006).CrossRefGoogle Scholar
  12. 12.
    O. Schmelz, A. Mews, T. Basche, et al., Langumir Am. Chem. Soc. 17, 2861 (2001).Google Scholar
  13. 13.
    A. O. Orlova, V. G. Maslov, A. V. Baranov, et al., Opt. Spektrosk. 105(5), 794 (2008).CrossRefGoogle Scholar
  14. 14.
    N. Gaponik, D. V. Talapin, A. L. Rogach, et al., J. Phys. Chem. B 106, 7177 (2002).CrossRefGoogle Scholar
  15. 15.
    T. V. Chichuk, G. N. Lyubchenko, E. F. Stranadko, and G. I. Klebanov, Lazernaya Meditsina 3(1), 24 (1999).Google Scholar
  16. 16.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977) [in Russian].Google Scholar
  17. 17.
    J. Yao, D. R. Larson, H. D. Vishwasrao, et al., Proc. Natl. Acad. Sci. USA 102, 14284 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. O. Orlova
    • 1
  • V. G. Maslov
    • 1
  • A. A. Stepanov
    • 1
  • I. Gounko
    • 2
  • A. V. Baranov
    • 1
  1. 1.State University of Information Technologies, Mechanics, and Optics, CIOTSt. PetersburgRussia
  2. 2.The School of Chemistry, Trinity CollegeUniversity of DublinDublin 2Ireland

Personalised recommendations