Optics and Spectroscopy

, 105:280

A nonlinear optical model of an air medium in the problem of filamentation of femtosecond laser pulses of different wavelengths

  • V. Yu. Fedorov
  • V. P. Kandidov
Nonlinear and Quantum Optics

Abstract

A frequency-dependent model of nonlinear optical response of atmospheric air upon propagation of a femtosecond laser pulse is constructed. The model is derived on the basis of generalized experimental and theoretical data on the cubic susceptibility and photoionization of gaseous components of air. The model was proved by solving the problems of filamentation of a femtosecond laser pulse with a wavelength lying in the range 0.24 to 1.2 μm.

PACS numbers

52.38.Hb 

References

  1. 1.
    A. Braun, G. Korn, X. Liu, et al., Opt. Lett. 20(1), 73 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    E. T. J. Nibbering, P. F. Curley, G. Grillon, et al., Opt. Lett. 21(1), 62 (1996).ADSGoogle Scholar
  3. 3.
    O. G. Kosareva, V. P. Kandidov, A. Brodeur, et al., Opt. Lett. 22(17), 1332 (1997).CrossRefADSGoogle Scholar
  4. 4.
    J. Kasparian, M. Rodriguez, G. Mejean, et al., Science 301(5629), 61 (2003).CrossRefADSGoogle Scholar
  5. 5.
    J. Schwarz, P. Rambo, J.-C. Diels, et al., Opt. Commun. 180, 383 (2000).CrossRefADSGoogle Scholar
  6. 6.
    S. Tzortzakis, B. Lamouroux, A. Chiron, et al., Opt. Lett. 25, 1270 (2000).CrossRefADSGoogle Scholar
  7. 7.
    S. Tzortzakis, B. Kamouroux, A. Chiron, et al., Opt. Commun. 197, 131 (2001).CrossRefADSGoogle Scholar
  8. 8.
    B. Prade, M. Franco, A. Mysyrowicz, et al., Opt. Lett. 31(17), 2601 (2006).CrossRefADSGoogle Scholar
  9. 9.
    D. Mikalauskas, A. Dubietis, and R. Danielus, Appl. Rhys. B 75, 899 (2002).CrossRefADSGoogle Scholar
  10. 10.
    S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, Opt. Commun. 181, 123 (2000).CrossRefADSGoogle Scholar
  11. 11.
    J. Liu, Z. Duan, Z. Zeng, et al., Phys. Rev. E 72, 026412 (2005).Google Scholar
  12. 12.
    B. La Fontaine, F. Vidal, Z. Jiang, et al., Phys. Plasmas 6, 1615 (1999).CrossRefADSGoogle Scholar
  13. 13.
    A. Talebpour, J. Yang, and S. L. Chin, Opt. Commun. 163(1), 29 (1999).CrossRefADSGoogle Scholar
  14. 14.
    L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964).Google Scholar
  15. 15.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Éksp. Teor. Fiz. 50(5), 1393 (1966).Google Scholar
  16. 16.
    M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, Zh. Éksp. Teor. Fiz. 6(12), 2008 (1986).Google Scholar
  17. 17.
    V. Mizrahi and D. P. Shelton, Phys. Rev. Lett. 55(7), 696 (1985).CrossRefADSGoogle Scholar
  18. 18.
    M. J. Shaw and C. J. Hooker, Opt. Commun. 103(1–2), 153 (1993).CrossRefADSGoogle Scholar
  19. 19.
    Y. Shimoji, A. T. Fay, R. S. F. Chang, and N. Djeu, J. Opt. Soc. Am. B 6(11), 1994 (1989).ADSGoogle Scholar
  20. 20.
    R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41(5), 2766 (1990).CrossRefADSGoogle Scholar
  21. 21.
    E. T. J. Nibbering, G. Grillon, M. A. Franco, et al., J. Opt. Soc. Am. B 14(3), 650 (1997).CrossRefADSGoogle Scholar
  22. 22.
    W. Liu and S. L. Chin, Opt. Express 13(15), 5750 (2005).CrossRefADSGoogle Scholar
  23. 23.
    D. M. Pennington, M. A. Henesian, and R. W. Hellwarth, Phys. Rev. A 39(6), 3003 (1989).CrossRefADSGoogle Scholar
  24. 24.
    D. V. Vlasov, R. A. Garaev, V. V. Korobkin, and R. V. Serov, Zh. Éksp. Teor. Fiz. 76, 2039 (1979).Google Scholar
  25. 25.
    Y. R. Shen, The principles of Nonlinear Optics (Nauka, Moscow, 1989; Wiley, New York, 1984).Google Scholar
  26. 26.
    K. Yu. Andrianov, V. P. Kandidov, O. G. Kosareva, et al., Izv. Akad. Nauk 66(8), 1091 (2002).Google Scholar
  27. 27.
    W. Liu, Q. Luo, and S. L. Chin, Chinese Opt. Lett. 1(1), 56 (2003).ADSGoogle Scholar
  28. 28.
    V. S. Popov, Usp. Fiz. Nauk 174(9), 921 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. Yu. Fedorov
    • 1
  • V. P. Kandidov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations