Advertisement

Optics and Spectroscopy

, Volume 105, Issue 2, pp 202–207 | Cite as

Diagnostics of an O2(1Δ) generator using multichannel recording of oxygen emission spectra

  • M. V. Zagidullin
  • V. D. Nikolaev
  • M. I. Svistun
  • N. A. Khvatov
  • E. V. Fomin
Spectroscopy of Atoms and Molecules

Abstract

The concentrations of water vapor and O2(1Δ), as well as the temperature in the gas flow at the exit of a singlet oxygen generator, are determined using multichannel recording of the singlet oxygen emission spectrum in the bands at 634, 703, 762, and 1268 nm. The water vapor concentration is found from the intensity ratio of the 762-nm band, which corresponds to the 1Σ → 3Σ transition of the oxygen molecule, and the dimole emission band at 634 nm. From the ratio of the integrated intensities of the bands at 634 and 1268 nm, the O2(1Δ) concentration is determined and it is shown that the yield of O2(1Δ) at the exit from the gas generator is about 52%. The temperature of the gas flow, determined by the rotational structure of the oxygen emission spectrum in the band at 762 nm, is about 300 K under the nominal conditions of the gas generator operation. The ratio of the photon fluxes in the 703 and 634nm bands of the O2(1Δ) dimole emission is 1.06. The temperature dependence of the dimole emission bandwidths is determined, which can be used for estimating the gas temperature at the exit of the O2(1Δ) generator.

PACS numbers

33.20.-t 33.70.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Allen, K. L. Carleton, S. J. Davis, et al., in Abstracts of the 25th AIAA Plasmadynamics and Lasers Conference (Colorado Springs, 1994), AIAA Paper 94–2433.Google Scholar
  2. 2.
    V. T. Gylys and L. F. Rubin, Appl. Opt. 37(6), 1026 (1998).CrossRefADSGoogle Scholar
  3. 3.
    O. Spalek, J. Kodymov’a, P. Stopka, and I. Micek, J. Phys. B 32, 1885 (1999).CrossRefADSGoogle Scholar
  4. 4.
    Yu. P. Podmar’kov and M. P. Frolov, Kvantovaya Élektron. (Moscow) 23(7), 611 (1996).Google Scholar
  5. 5.
    N. N. Yuryshev, A. A. Ionin, M. P. Frolov, et al., SPIE Proc. 5448, 790 (2004).CrossRefADSGoogle Scholar
  6. 6.
    M. V. Zagidullin, V. D. Nikolaev, M. I. Svistun, and N. A. Khvatov, Inzhenerno-Fiz. Zh. 80, 121 (2007).Google Scholar
  7. 7.
    H. Naus and W. Ubachs, Appl. Opt. 38, 3423 (1999).CrossRefADSGoogle Scholar
  8. 8.
    H. F. Tiedje, S. DeMille, L. MacArtur, and R. L. Brooks, Can. J. Phys. 79, 773 (2001).CrossRefADSGoogle Scholar
  9. 9.
    S. Cheah, Y. Lee, and J. F. Ogilvie, J. Quant. Spectrosc. Radiat. Transfer 64, 467 (2000).CrossRefADSGoogle Scholar
  10. 10.
    S. M. Newman, I. C. Lane, A. J. Orr-Ewing, et al., J. Chem. Phys. 110, 10749 (1999).Google Scholar
  11. 11.
    P. Borrell and N. H. Rich, Chem. Phys. Lett. 99, 144 (1983).CrossRefADSGoogle Scholar
  12. 12.
    H. V. Lilenfeld, P. A. G. Carr, and F. E. Hovis, J. Chem. Phys. 81, 5730 (1984).CrossRefADSGoogle Scholar
  13. 13.
    R. G. Aviles, D. F. Muller, and P. L. Houston, Appl. Phys. Lett. 37, 358 (1980).CrossRefADSGoogle Scholar
  14. 14.
    L. S. Rothman, D. Jacquemart, A. Barbe, et al., J. Quant. Spectrosc. Radiat. Transfer 96, 139 (2005).CrossRefADSGoogle Scholar
  15. 15.
    S. H. Whitelow and F. D. Findlay, Can. J. Chem. 45, 2087 (1967).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • M. V. Zagidullin
    • 1
  • V. D. Nikolaev
    • 1
  • M. I. Svistun
    • 1
  • N. A. Khvatov
    • 1
  • E. V. Fomin
    • 1
  1. 1.Lebedev Institute of Physics, Samara BranchRussian Academy of SciencesSamaraRussia

Personalised recommendations