Optics and Spectroscopy

, Volume 105, Issue 2, pp 163–170 | Cite as

Interpretation of the electronic spectra of Fe and Co porphyrins based on quantum-chemical calculations by the density functional method

Spectroscopy of Atoms and Molecules

Abstract

Using the time-dependent formalism of the density functional theory (time-dependent density functional theory (TDDFT)), the energies and intensities of the electronic transitions of some Fe and Co porphyrins and their anionic forms with different electron localization are studied quantum chemically. It is shown that, in the majority of the considered cases, the calculations performed with the B3LYP functional with a comparatively narrow basis set (6-31G) are quite consistent with previous calculations of these objects by the ZINDO/S-CI semiempirical method taking into account double excitations. Furthermore, the level of agreement of the B3LYP calculations with experiment is the same as that obtained with the ZINDO/S-CI method.

PACS numbers

31.15.ee 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gouterman, J. Mol. Spectrosc. 6(6), 138 (1961).CrossRefADSGoogle Scholar
  2. 2.
    C. Weiss, H. Kobayashi, and M. Gouterman, J. Mol. Spectrosc. 16, 415 (1965).CrossRefADSGoogle Scholar
  3. 3.
    G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Spectroscopy of Chlorophyll and Related Compounds (Nauka i Tekhnika, Minsk, 1968) [in Russian].Google Scholar
  4. 4.
    S. J. Chartrell, C. A. McAuliffe, R. W. Munn, and A. C. Pratt, Coord. Chem. Rev. 16(4), 259 (1975).CrossRefGoogle Scholar
  5. 5.
    V. G. Maslov, Teor. Eksp. Khim. 20(3), 288 (1984).Google Scholar
  6. 6.
    M. Zerner and M. Gouterman, Theor. Chim. Acta 4(1), 45 (1966).CrossRefGoogle Scholar
  7. 7.
    A. M. Shaffer, M. Gouterman, and E. Davidson, Theor. Chim. Acta 30(1), 9 (1973).CrossRefGoogle Scholar
  8. 8.
    V. G. Maslov, Teor. Eksp. Khim. 26(6), 651 (1990).Google Scholar
  9. 9.
    V. G. Maslov, Teor. Eksp. Khim. 27(2), 144 (1991).Google Scholar
  10. 10.
    M. E. Casida, in Recent Advances in Density Functional Methods, Ed. by D. P. Chong (World Sci., Singapore, 1995), Part I, p. 155.Google Scholar
  11. 11.
    K. A. Nguyen and R. Pachter, J. Chem. Phys. 114, 10757 (2001).Google Scholar
  12. 12.
    V. G. Maslov, Opt. Spektrosk. 101(6), 917 (2006) [Opt. Spectrosc. 101 (6), 862 (2006)].Google Scholar
  13. 13.
    V. G. Maslov, Opt. Spektrosk. 101(6), 908 (2006) [Opt. Spectrosc. 101 (6), 853 (2006)].Google Scholar
  14. 14.
    J. Kong, C. A. White, A. I. Krylov, et al., J. Comput. Chem. 21, 1532 (2000).CrossRefGoogle Scholar
  15. 15.
    D. Eastwood and M. Gouterman, J. Mol. Spectrosc. 30(3), 437 (1969).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations