Optics and Spectroscopy

, Volume 104, Issue 5, pp 784–790 | Cite as

Study of irradiation conditions and thermodynamics of optical glass in the problem of modification of materials by femtosecond laser pulses

Lasers and Their Applications

Abstract

The local heating of glass by a focused femtosecond laser pulse and cooling of an irradiated region are numerically modeled. The structural modifications that change the optical properties of glass are assumed to occur within a bulk region whose temperature after irradiation exceeds the glass transition temperature. The shape of the modified region obtained from the calculations coincides with that known from experimental data available. The size of this region is determined by the spatiotemporal dynamics of the laser beam under multiphoton absorption conditions. The heating of glass is maximal in front of a thin lens used for the beam focusing.

PACS numbers

42.62.-b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Eaton, H. Zhang, et al., Opt. Express 13, 4708 (2005).CrossRefADSGoogle Scholar
  3. 3.
    A. Zoubir, M. Richardson, et al., Opt. Lett. 29, 748 (2004).CrossRefADSGoogle Scholar
  4. 4.
    J. M. Harbold, F. Ö. Ilday, et al., Opt. Lett. 27, 119 (2002).CrossRefADSGoogle Scholar
  5. 5.
    C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).CrossRefADSGoogle Scholar
  6. 6.
    K. D. Moll and A. L. Gaeta, Opt. Lett. 29, 995 (2004).CrossRefADSGoogle Scholar
  7. 7.
    O. G. Kosareva, A. V. Grigor’evskiĭ, and V. P. Kandidov, Kvantovaya Élektron. (Moscow) 35, 1013 (2005).CrossRefGoogle Scholar
  8. 8.
    D. M. Rayner, A. Naumov, and P. B. Corkum, Opt. Express 13, 3208 (2005).CrossRefADSGoogle Scholar
  9. 9.
    Zh. Wu, H. Jiang, Q. Sun, et al., Phys. Rev. A: 68, 063820 (2003).Google Scholar
  10. 10.
    C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A 76, 351 (2003).CrossRefADSGoogle Scholar
  11. 11.
    A. P. Aleksandrov, A. A. Babin, A. M. Kiselev, et al., Kvantovaya Élektron. (Moscow) 31, 398 (2001).CrossRefGoogle Scholar
  12. 12.
    N. N. Akhmediev and A. Ankiewisz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997; Fizmatlit, Moscow, 2003).Google Scholar
  13. 13.
    Q. Feng, J. V. Moloney, et al., IEEE J. Quantum Electron. 33, 127 (1997).CrossRefADSGoogle Scholar
  14. 14.
    G. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995; Mir, Moscow, 1996).Google Scholar
  15. 15.
    W. P. Huang and C. L. Xu, IEEE Photon. Tech. Lett. 4, 1118 (1992).CrossRefADSGoogle Scholar
  16. 16.
    C. W. McCurdy and C. K. Stroud, Comput. Phys. Commun. 63, 323 (1991).MATHCrossRefADSGoogle Scholar
  17. 17.
    J. Troles, F. Smektala, G. Boudebsa, et al., J. Optoelectron. Adv. Mat. 4, 729 (2002).Google Scholar
  18. 18.
    P. Liu, W. L. Smith, H. Lotem, et al., Phys. Rev. 17, 4620 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Kandidov, I. S. Golubtsov, and O. G. Kosareva, Kvantovaya Élektron. (Moscow) 34, 348 (2004).CrossRefGoogle Scholar
  20. 20.
    A. A. Samarskiĭ and P. N. Vabishchevich, Computational Heat Transfer (Editorial URSS, Moscow, 2003) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations