Optics and Spectroscopy

, Volume 103, Issue 6, pp 890–894

Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities

Article

Abstract

Entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities are considered. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell’s inequality violation is obtained using an appropriate dichotomic cavity operator that is, in principle, measurable.

PACS numbers

42.50.Dv 03.65.Ud 03.67.Mn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).MATHCrossRefADSGoogle Scholar
  2. 2.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).MATHGoogle Scholar
  3. 3.
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  4. 4.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).CrossRefADSGoogle Scholar
  5. 5.
    J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J. A. Bergou and M. Hillery, Phys. Rev. A 55, 4585 (1997).CrossRefADSGoogle Scholar
  7. 7.
    P. Meystre, in Progress in Optics XXX, Cavity Quantum Optics and the Quantum Measurement Process (Elsevier, New York, 1992).Google Scholar
  8. 8.
    D. E. Browne and M. B. Plenio, Phys. Rev. A 67, 012325 (2003).Google Scholar
  9. 9.
    A. Messina, Eur. Phys. J. D 18, 379 (2002).ADSGoogle Scholar
  10. 10.
    A. Napoli, A. Messina, and G. Compagno, Fortschr. Phys. 51, 81 (2003).MATHCrossRefADSGoogle Scholar
  11. 11.
    C. C. Gerry, Phys. Rev. A 53, 4583 (1996).CrossRefADSGoogle Scholar
  12. 12.
    M. S. Kim and J. Lee, Phys. Rev. A 61, 042102 (2000).Google Scholar
  13. 13.
    L. Davidovich, A. Maali, M. Brune, et al., Phys. Rev. Lett. 71, 2360 (1993).CrossRefADSGoogle Scholar
  14. 14.
    S. Haroche, Phil. Trans. R. Soc. (London) A 361, 1339 (2003).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Stoler, B. E. A. Saleh, and M. C. Reich, Opt. Acta 32, 345 (1985).Google Scholar
  16. 16.
    M. Noussa and B. Baseia, Phys. Lett. A 238, 223 (1998).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, Phys. Rev. A 74, 045803 (2006).Google Scholar
  18. 18.
    R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, Phys. Rev. A 72, 053806 (2005).Google Scholar
  19. 19.
    R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, Open Sys. Inform. Dyn. 13, 463 (2006).MATHCrossRefGoogle Scholar
  20. 20.
    A. Vidiella-Barranco and J. A. Roversi, Phys. Rev. A 50, 5233 (1994).CrossRefADSGoogle Scholar
  21. 21.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, New York, Melbourne, 1995).Google Scholar
  22. 22.
    A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 64, 050101 (2001).Google Scholar
  23. 23.
    R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, quatn-ph/0703144.Google Scholar
  24. 24.
    S. Massar, S. Pironio, J. Roland, and B. Gisin, Phys. Rev. A 66, 052112 (2002).Google Scholar
  25. 25.
    D. L. Moehring, M. J. Madsen, B. B. Blinov, and C. Monroe, Phys. Rev. Lett. 93, 090410 (2004).Google Scholar
  26. 26.
    P. Maioli et al., Phys. Rev. Lett. 94, 113601 (2005).Google Scholar
  27. 27.
    A. Auffeves et al., Phys. Rev. Lett. 91, 230405 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • R. Lo Franco
    • 1
  • G. Compagno
    • 1
  • A. Messina
    • 1
  • A. Napoli
    • 1
  1. 1.Dipartimento di Scienze Fisiche ed AstronomicheUniversità di PalermoPalermoItaly

Personalised recommendations