Optics and Spectroscopy

, Volume 103, Issue 5, pp 766–771

Photoluminescence and Raman spectra of SnOx nanostructures doped with Sm ions

Condenced-Matter spectroscopy

Abstract

The photoluminescence (PL) and Raman scattering of SnOx nanoparticles deposited from vapor phase have been studied. The PL spectra are characterized by a two-band structure. The high-energy band in the range from 300 to 350 nm is due to the exciton pair annihilation and may characterize the band gap of SnOx nanocrystals as a function of their diameter. In the red spectral region (from 600 to 700 nm), a luminescence band due to defects in nanocrystals manifests itself. The existence of defects in SnOx nanostructures is confirmed by Raman spectroscopy. Doping of SnOx nanoparticles with rare earth (samarium) atoms leads to the appearance of strong luminescence lines in the red region of the PL spectrum.

PACS numbers

78.20.Ci 78.20.Ls 78.30.Am 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Gaponenko, Optical Properties of Semiconductor Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
  2. 2.
    G. Ledoux, O. Guillois, D. Porterat, et al., Phys. Rev. B: Condens. Matter Mater Phys. 62(23), 15 942 (2000).Google Scholar
  3. 3.
    S. A. Krivelevich, M. I. Makoviĭchuk, and R. V. Selyukov, Fiz. Tverd. Tela (St. Petersburg) 47(1), 13 (2005) [Phys. Solid State 47, 9 (2005)].Google Scholar
  4. 4.
    F. Huisken, B. Kohn, and V. Paillard, Appl. Phys. Lett. 74(25), 3776 (1999).CrossRefADSGoogle Scholar
  5. 5.
    E. J. H. Lee, C. Ribeiro, T. R. Giraldi, et al., Appl. Phys. Lett. 84(10), 1745 (2004).CrossRefADSGoogle Scholar
  6. 6.
    X. S. Fang, C. H. Ye, X. X. Xu, et al., J. Phys.: Condens. Matter 16, 4157 (2004).CrossRefADSGoogle Scholar
  7. 7.
    M. J. Konstantinovic, S. Bersier, X. Wang, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 66(23), 161311R (2002).Google Scholar
  8. 8.
    V. G. Kravets and V. Yu. Kolmykova, Opt. Spektrosk. 99(1), 75 (2005) [Opt. Spectrosc. 99, 68 (2005)].CrossRefGoogle Scholar
  9. 9.
    H. Kohno, T. Iwasaki, Y. Mita, and S. Takeda, J. Appl. Phys. 91(5), 3232 (2002).CrossRefADSGoogle Scholar
  10. 10.
    N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96(8), 4671 (2004).CrossRefADSGoogle Scholar
  11. 11.
    Y. Liu, Yi. Dong, and G. Wang, Appl. Phys. Lett. 82(2), 260 (2003).CrossRefADSGoogle Scholar
  12. 12.
    M. Katsikini, K. Papagelis, E. C. Paloura, and S. Ves, J. Appl. Phys. 94(7), 4389 (2003).CrossRefADSGoogle Scholar
  13. 13.
    A. Maradudin, Defects and Vibrational Spectra of Crystals (Mir, Moscow, 1968) [in Russian].Google Scholar
  14. 14.
    F. Vetrone, J.-C. Boyer, J. C. Capobianco, et al., Nanotecnology 15, 75 (2004).CrossRefADSGoogle Scholar
  15. 15.
    Sh. Fujihara and M. Oikawa, J. Appl. Phys. 95(12), 8002 (2004).CrossRefADSGoogle Scholar
  16. 16.
    T. W. Kim, D. U. Lee, J. H. Lee, et al., J. Appl. Phys. 90(1), 175 (2001).CrossRefADSGoogle Scholar
  17. 17.
    F. Gu, S. F. Wang, C. F. Song, et al., J. Phys. Chem. B 108, 8119 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute of Information Recording ProblemsNational Academy of Science of UkraineKievUkraine

Personalised recommendations