Advertisement

Optics and Spectroscopy

, Volume 103, Issue 3, pp 398–404 | Cite as

Thermodynamics of a quantized electromagnetic field in absorbing media

  • B. A. VeklenkoEmail author
Nanophotonics, van der Waals Interactions, and Casimir-Polder Forces
  • 36 Downloads

Abstract

Because induced emission is an incoherent phenomenon, it is impossible to represent the Gibbs thermodynamic potential of a quantized electromagnetic field in an absorbing medium in terms of the standard refractive index with an imaginary component. This is completely true with respect to the entropy of the electromagnetic field, the heat capacity, and the state equation, as well as to the stationary ponderomotive forces. The so-called causal refractive index arises in the theory, which differs from the standard refractive index in the analytical properties. The ideality condition of the photon gas in dissipative media does not hold without using the causal refractive index. The Kirchhoff law holds true only if the causal refractive index negligibly differs from unity.

PACS numbers

42.50.Nn 42.50.-p 42.50.Ct 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    S. M. Rytov, Dokl. Akad. Nauk SSSR 87 (1952).Google Scholar
  3. 3.
    M. A. Leontovich and S. M. Rytov, Zh. Éksp. Teor. Fiz. 23 (1952).Google Scholar
  4. 4.
    H. Nyquist, Phys. Rev. 32(1), 110 (1928).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Akad. Nauk SSSR, Moscow, 1953) [in Russian].Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960; Nauka, Moscow, 1970).zbMATHGoogle Scholar
  7. 7.
    Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].Google Scholar
  8. 8.
    Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 114(1), 135 (1998) [JETP 87 (1), 76 (1998)].Google Scholar
  9. 9.
    E. M. Lifshits, Zh. Éksp. Teor. Fiz. 29, 94 (1955).Google Scholar
  10. 10.
    H. B. C. Casimir and D. Polder, Phys. Rev. 73(4), 360 (1948).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, New Jersey, 1963).Google Scholar
  12. 12.
    H. B. Callen and T. A. Welton, Phys. Rev. 83(1), 34 (1951).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    E. A. Power and T. Thirunamachandran, Phys. Rev. A 47(4), 2539 (1993).CrossRefADSGoogle Scholar
  14. 14.
    L. Knoll, S. Scheel, and D. G. Welsh, Coherent and Statistics of Photons and Atoms, Ed. by J. N. Y. Perina (Wiley, New York, 2001).Google Scholar
  15. 15.
    Y. Sherkunov, Phys. Rev. A 72, 052703 (2005).Google Scholar
  16. 16.
    N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk SSSR 126(1), 53 (1959).Google Scholar
  17. 17.
    Yu. L. Klimontovich, Usp. Fiz. Nauk 151, 309 (1987) [Sov. Phys. Usp. 30 (2), 154 (1987)].MathSciNetGoogle Scholar
  18. 18.
    B. A. Veklenko and Y. B. Sherkunov, Cond. Matt. Phys 7, 603 (2004).Google Scholar
  19. 19.
    B. A. Veklenko and Y. B. Sherkunov, Prikl. Fiz., No. 4, 5 (2004).Google Scholar
  20. 20.
    T. Matsubara, Prog. Theor. Phys. 14(4), 351 (1955).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    B. A. Veklenko and Yu. B. Sherkunov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 17 (2000).Google Scholar
  22. 22.
    B. A. Veklenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 77 (1978).Google Scholar
  23. 23.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 96, 457 (1989) [Sov. Phys. JETP 69, 258 (1989)].Google Scholar
  24. 24.
    B. A. Veklenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 132 (1987).Google Scholar
  25. 25.
    B. A. Veklenko, Opt. Spektrosk. 94(5), 845 (2003) [Opt. Spectrosc. 94 (5), 784 (2003)].CrossRefGoogle Scholar
  26. 26.
    V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics (Fizmatgiz, Moscow, 1961; Wiley, New York, 1962).Google Scholar
  27. 27.
    B. A. Veklenko and Mosk. Trudy, Énerg. In-ta, No. 426, 42 (1979).Google Scholar
  28. 28.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 114(2), 492 (1998) [JETP 87 (2), 270 (1998)].Google Scholar
  29. 29.
    M. I. D’yakonov and V. I. Perel’, Zh. Éksp. Teor. Fiz. 47(4), 1483 (1964) [Sov. Phys. JETP 20, 997 (1964)].Google Scholar
  30. 30.
    B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. D 72, 085009 (2005).Google Scholar
  31. 31.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 119(6), 1087 (2001) [JETP 92 (6), 940 (2001)].Google Scholar
  32. 32.
    B. A. Veklenko, R. B. Gusarov, and Yu. B. Sherkunov, Zh. Éksp. Teor. Fiz. 113(2), 521 (1998) [JETP 86 (2), 289 (1998)].Google Scholar
  33. 33.
    B. A. Veklenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 11 (1984).Google Scholar
  34. 34.
    B. A. Veklenko and Yu. B. Sherkunov, Prikl. Fiz., No. 5, 7 (2005).Google Scholar
  35. 35.
    B. A. Veklenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 71 (1983).Google Scholar
  36. 36.
    M. Fichet, F. Shuller, D. Bloch, and M. Ducloy, Phys. Rev. A 51(2), 1553 (1995).CrossRefADSGoogle Scholar
  37. 37.
    H. Failache, S. Saltiel, M. Fitchet, et al., Phys. Rev. Lett. 83(26), 5467 (1999).CrossRefADSGoogle Scholar
  38. 38.
    H. Failache, S. Saltiel, A. Fischer, et al., Phys. Rev. Lett. 88, 243603 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations