Optics and Spectroscopy

, Volume 103, Issue 3, pp 360–365 | Cite as

Whispering gallery mode emission from microtube cavity

  • K. I. Rusakov
  • A. A. Gladyshchuk
  • Y. P. Rakovich
  • J. F. Donegan
  • S. Balakrishnan
  • Y. Gun’ko
  • T. S. Perova
  • R. A. Moore
Nanophotonics; Modification of Spontaneous Emission

Abstract

Optical properties were studied of a novel microtube cavity of ∼8 μm diameter prepared by vacuum-assisted filtration of aluminosilicate xerogel using micro-channel glass matrix followed by thermal treatment. Periodic very narrow peaks of the emission spectra corresponding to orthogonally polarized whispering gallery modes were detected. The spectral position of different modes were analyzed using Lorenz-Mie theory. The mode assignment permits calculation of the spectral dependence of cavity Q values associated with observed peaks. Intensity-dependent, time-resolved stimulated emission experiments were performed on the single microtube cavity. The results show a strong decrease in emission lifetime with increasing excitation intensity, consistent with a mechanism of amplified stimulated emission.

PACS numbers

42.55.Sa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Vahala, Nature 424, 839 (2003).CrossRefADSGoogle Scholar
  2. 2.
    J. C. Knight, H. S. T., Driver, R. J. Huctcheon, and G. N. Robertson, Opt. Lett. 17, 1280 (1992).ADSGoogle Scholar
  3. 3.
    H.-J. Moon, Y.-T. Chough, and K. An, Phys. Rev. Lett. 85, 3161 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. Shevchenko, K. Lindfors, C. K. Bucher, and M. Kaivola, Opt. Commun. 245, 349 (2005).CrossRefADSGoogle Scholar
  5. 5.
    R. A. Wallingford, and A. G. Ewing, Anal. Chem. 60, 1972 (1988).CrossRefGoogle Scholar
  6. 6.
    S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).CrossRefADSGoogle Scholar
  7. 7.
    B. V. Hunter and W. S. Bickel, Appl. Opt. 33, 8387 (1994).ADSGoogle Scholar
  8. 8.
    T. Kipp, H. Welsch, C. H. Strelow, et al., Phys. Rev. Lett. 96, 077403 (2006).Google Scholar
  9. 9.
    M. Nogami, and Y. Abe, J. Non-Cryst. Solids 197, 73 (1996).CrossRefADSGoogle Scholar
  10. 10.
    W. H., Green, K. P. Le, J. Grey, et al., Science 276, 1826 (1997).CrossRefGoogle Scholar
  11. 11.
    Y. P. Rakovich, J. F. Donegan, N. Gaponik, and A. L. Rogach, Appl. Phys. Lett. 83, 2529 (2003).CrossRefADSGoogle Scholar
  12. 12.
    H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).Google Scholar
  13. 13.
    M. Kerker, and E. Matijevic, J. Opt. Soc. Am. 51, 506 (1961).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    P. W. Barber, and S. C. Hill, Light Scattering by Computational Methods (World Scientific, Singapore, 1990).Google Scholar
  15. 15.
    H.-J. Moon, J. W. Park, S. B., Lee, et al., Opt. Connum. 235, 401 (2004).CrossRefADSGoogle Scholar
  16. 16.
    E. M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  17. 17.
    U. Mohideen, R. E. Slucher, F. Jahnke, and S. W. Koch, Phys. Rev. Lett. 73, 1785 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • K. I. Rusakov
    • 1
  • A. A. Gladyshchuk
    • 1
  • Y. P. Rakovich
    • 1
    • 2
  • J. F. Donegan
    • 2
  • S. Balakrishnan
    • 3
  • Y. Gun’ko
    • 3
  • T. S. Perova
    • 4
  • R. A. Moore
    • 4
  1. 1.Physics DepartmentBrest State Technical UniversityBrestBelarus
  2. 2.School of PhysicsTrinity CollegeDublin 2Ireland
  3. 3.School of ChemistryTrinity CollegeDublin 2Ireland
  4. 4.Department of Electronic and Electrical EngineeringTrinity College DublinDublin 2Ireland

Personalised recommendations