Optics and Spectroscopy

, Volume 103, Issue 1, pp 129–136

Polarization-momentum hyper-entangled two photon states

  • M. Barbieri
  • G. Vallone
  • F. De Martini
  • P. Mataloni
Quantum States of Optical Fields and Their Use in Quantum Informatics

Abstract

We present a parametric source which allows the engineering of polarization-momentum hyperentangled two photon states based on linear optics and a single type-I nonlinear crystal. The nonlocal character of these states has been verified by various tests, including the “All Versus Nothing” test of local realism [A. Cabello, Phys. Rev. Lett. 87, 010403 (2001)], which represents a generalization of the GHZ to the case of two entangled particles and two observers. We have also created a complete and deterministic Bell-state measurement by a novel experimental scheme which adopts polarization-momentum hyper-entanglement and requires linear optics and single photon detectors.

PACS numbers

03.65.Ud 03.67.-a 03.67.Mn 03.67.Hk 42.50.Xa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996); E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).CrossRefADSGoogle Scholar
  2. 2.
    C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett. 70, 1895 (1993).MATHCrossRefADSGoogle Scholar
  3. 3.
    A. Ekert, Nature 358, 14 (1992); N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).CrossRefADSGoogle Scholar
  4. 4.
    P. G. Kwiat, K. Mattle, H. Weinfurteret, et al., Phys. Rev. Lett. 75, 4337 (1995); P. G. Kwiat, E. Waks, A. G. White, et al., Phys. Rev. A 60, R773 (1999); C. Cinelli, G. Di Nepi, F. De Martini, et al., Phys. Rev. A 70, 022321 (2004).CrossRefADSGoogle Scholar
  5. 5.
    J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 64, 2495 (1990).CrossRefADSGoogle Scholar
  6. 6.
    N. Langford et al., Phys. Rev. Lett. 93, 053601 (2004).Google Scholar
  7. 7.
    J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).CrossRefADSGoogle Scholar
  8. 8.
    J. Brendel et al., Phys. Rev. Lett. 82, 2594 (1999).CrossRefADSGoogle Scholar
  9. 9.
    N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, Phys. Rev. A 59, 3295 (1999); J. Calsamiglia and N. Lütkenhaus, Appl. Phys. B 72, 67 (2001).CrossRefADSGoogle Scholar
  10. 10.
    P. Walther and A. Zeilinger, Phys. Rev. A 72, 010302(R) (2005).Google Scholar
  11. 11.
    P. G. Kwiat and H. Weinfurter, Phys. Rev. A 58, R2623 (1998).CrossRefADSGoogle Scholar
  12. 12.
    S. P. Walborn, S. Padù, and C. H. Monken, Phys. Rev. A 68, 042313 (2003); S. Ghosh, G. Kar, A. Roy, et al., Phys. Rev. Lett. 87, 277 902 (2001); J. Calsamiglia and N. Lukenhaus, Appl. Phys. B 72, 67 (1999).Google Scholar
  13. 13.
    R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, Quant. Inf. Comp. 4, 93 (2004); G. M. D’Ariano, P. Mataloni, and M. F. Sacchi, Phys. Rev. A 71, 062337 (2005).Google Scholar
  14. 14.
    H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett. 85, 3313 (2000); D. Kaszlikowski, D. K. L. Oi, M. Christandl, et al., Phys. Rev. A 67, 012310 (2003).CrossRefADSGoogle Scholar
  15. 15.
    D. Collins, N. Gisin, N. Linden, et al., Phys. Rev. Lett. 88, 040404 (2002); D. Kaszlikowski, L. C. Kwek, J.-L. Chen, et al., Phys. Rev. A 65, 032118 (2002).Google Scholar
  16. 16.
    C. Cinelli, G. Di Nepi, F. De Martini, et al., Phys. Rev. A 70, 022321 (2004).Google Scholar
  17. 17.
    M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, Phys. Lett. A 23, 334 (2005).Google Scholar
  18. 18.
    M. Barbieri, F. De Martini, G. Di Nepi, et al., Phys. Rev. Lett. 91, 227901 (2003).Google Scholar
  19. 19.
    M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, Phys. Rev. Lett. 92, 177901 (2004).Google Scholar
  20. 20.
    M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, Phys. Rev. A 72, 052110 (2005).Google Scholar
  21. 21.
    J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).CrossRefADSGoogle Scholar
  22. 22.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).CrossRefADSGoogle Scholar
  23. 23.
    A. Cabello, Phys. Rev. Lett. 87, 010403 (2001); Z. B. Chen, J. W. Pan, Y. D. Zhang, et al., Phys. Rev. Lett. 90, 160408 (2003).Google Scholar
  24. 24.
    C. Cinelli, et al., Phys Rev. Lett. 95, 240405 (2005).Google Scholar
  25. 25.
    M. Barbieri et al., Phys. Rev. Lett. 97, 140407 (2006).Google Scholar
  26. 26.
    C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 96, 190501 (2006).Google Scholar
  27. 27.
    M. Barbieri, G. Vallone, F. De Martini, and P. Mataloni, quant-ph/0609080.Google Scholar
  28. 28.
    G. M. D’Ariano, P. Mataloni, and M. F. Sacchi, Phys. Rev. A 71, 062337 (2005).Google Scholar
  29. 29.
    N. K. Langford, R. B. Dalton, M. D. Harvey, et al., Phys. Rev. Lett. 93, 053601 (2004).Google Scholar
  30. 30.
    N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).Google Scholar
  31. 31.
    J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989); J. Brendel et al., Phys. Rev. Lett. 82, 2594 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. Barbieri
    • 1
  • G. Vallone
    • 1
    • 2
  • F. De Martini
    • 1
  • P. Mataloni
    • 1
  1. 1.Dipartimento di Fisica dell’Universitá “La Sapienza” and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della MateriaRomaItaly
  2. 2.Dipartimento di Fisica Teorica dell’Università di Torino and INFN—sezione di TorinoTorinoItaly
  3. 3.School of Physical Sciencesthe University of QueenslandBrisbaneAustralia

Personalised recommendations