Advertisement

Optics and Spectroscopy

, Volume 102, Issue 6, pp 842–849 | Cite as

Dynamics of collisional relaxation of the optically induced anisotropy of para-quaterphenyl in the gas phase

  • A. P. Blokhin
  • M. F. Gelin
  • O. V. Buganov
  • V. L. Dubovski
  • S. A. Tikhomirov
  • G. B. Tolstorozhev
Spectroscopy of Atoms and Molecules

Abstract

The decay kinetics of the optically induced anisotropy of para-quaterphenyl molecules is theoretically and experimentally studied in a wide range of pressures of buffer gases, pentane and argon. The anisotropy of absorption is measured in real time using a femtosecond spectrometer. Comparison with the theoretical models of orientational relaxation shows that the collisional interruption of the angular momentum corresponds to a situation that is intermediate between the situations described by the J-diffusion model and by the model of the Fokker-Planck equation and is closer to the latter situation. In terms of the Keilson-Storer model, such a regime corresponds to the collision efficiency parameter γ ≈ 0.78 for argon and 0.66 for pentane; i.e., 4.5 collisions with argon or 2.9 collisions with pentane are necessary to completely randomize the angular momentum of para-quaterphenyl molecules.

PACS numbers

32.50.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gordon, Adv. Magn. Reson. 3, 1 (1968).Google Scholar
  2. 2.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem. A 105,3680 (2001).CrossRefGoogle Scholar
  3. 3.
    A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids (Cambridge University Press, Cambridge, 1994).Google Scholar
  4. 4.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1991).Google Scholar
  5. 5.
    A. D. Boese, A. Chandra, J. M. L. Martin, and D. Marx, J. Chem. Phys. 119, 5965 (2003).CrossRefADSGoogle Scholar
  6. 6.
    J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, J. Chem. Phys. 122, 124505 (2005).CrossRefADSGoogle Scholar
  7. 7.
    H.-S. Tan, I. R. Piletic, and M. D. Fayer, J. Chem. Phys. 122, 174501 (2005).Google Scholar
  8. 8.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem. 98, 3334 (1994).CrossRefGoogle Scholar
  9. 9.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, et al., J. Chem. Phys. 110, 978 (1999).CrossRefADSGoogle Scholar
  10. 10.
    M. Volk, S. Gnanakaran, E. Gooding, et al., J. Phys. Chem. A 101, 638 (1997).CrossRefGoogle Scholar
  11. 11.
    A. P. Blokhin and M. F. Gelin, Chem. Phys. 252, 323 (2000).CrossRefADSGoogle Scholar
  12. 12.
    J. S. Baskin, L. Banares, S. Pedersen, and A. H. Zewail, J. Chem. Phys. 100, 11920 (1996).CrossRefGoogle Scholar
  13. 13.
    R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys. 98, 6291 (1993).CrossRefADSGoogle Scholar
  14. 14.
    G. Haran, E. A. Morlino, J. Matthes, et al., J. Phys. Chem. A 103, 2202 (1999).CrossRefGoogle Scholar
  15. 15.
    A. P. Blokhin, M. F. Gelin, and A. V. Pisliakov, Proc. SPIE-Int. Soc. Opt. Eng. 4002, 267 (1999).ADSGoogle Scholar
  16. 16.
    N. A. Borisevich, E. V. Khoroshilov, I. V. Kryukov, et al., Chem. Phys. Lett. 191, 225 (1992).CrossRefADSGoogle Scholar
  17. 17.
    J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, Chem. Phys. Lett. 275, 437 (1997).CrossRefADSGoogle Scholar
  18. 18.
    J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A 102, 4158 (1998).CrossRefGoogle Scholar
  19. 19.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, et al., Zh. Prikl. Spektrosk. 70, 66 (2003).Google Scholar
  20. 20.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, et al., Zh. Prikl. Spektrosk. 70, 340 (2003).Google Scholar
  21. 21.
    T. G. Pavloupolos and P. R. Hammond, J. Am. Chem. Soc. 96, 6568 (1974).CrossRefGoogle Scholar
  22. 22.
    Y. Delugeard, J. Desuche, and J. Baudour, Acta Crystallogr. B 32, 702 (1976).CrossRefGoogle Scholar
  23. 23.
    M. F. Gelin, J. Phys. Chem. A 104, 6150 (2000).CrossRefGoogle Scholar
  24. 24.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, et al., Opt. Spektrosk. 95(1), 41 (2003) [Opt. Spectrosc. 95 (1), 35 (2003)].CrossRefADSGoogle Scholar
  25. 25.
    M. F. Gelin and D. S. Kosov, J. Chem. Phys. 124,144514 (2006).CrossRefADSGoogle Scholar
  26. 26.
    A. P. Blokhin and M. F. Gelin, J. Mol. Liq. 93, 47 (2001).CrossRefGoogle Scholar
  27. 27.
    R. E. D. McClung, Adv. Mol. Rel. Int. Proc. 10, 83 (1977).CrossRefGoogle Scholar
  28. 28.
    D. Chandler, J. Chem. Phys. 60, 3500 (1974).CrossRefADSGoogle Scholar
  29. 29.
    R. M. Lynden-Bell, in Molecular Liquids, Ed. by A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood (Reidel, Dordrecht, 1984).Google Scholar
  30. 30.
    N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, et al., Kvantovaya Élektron. (Moscow) 28, 225 (1999).Google Scholar
  31. 31.
    Y. Zhang, M. I. Sluch, M. M. Somoza, and M. A. Berg, J. Chem. Phys. 115, 4212 (2001).CrossRefADSGoogle Scholar
  32. 32.
    V. M. Zhdanov and M. Ya. Alievskiĭ, Transport and Relaxation Processes in Molecular Gases (Nauka, Moscow, 1989) [in Russian].Google Scholar
  33. 33.
    M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys. 83, 89 (1993).Google Scholar
  34. 34.
    D. J. Chandler, Chem. Phys. 62, 1358 (1975).CrossRefADSGoogle Scholar
  35. 35.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, et al., Chem. Phys. 272, 69 (2001).CrossRefGoogle Scholar
  36. 36.
    E. V. Dudko, I. I. Kalosha, and V. A. Tolkachev, Opt. Spektrosk. 97(2), 235 (2004) [Opt. Spectrosc. 97 (2), 221 (2004)].CrossRefGoogle Scholar
  37. 37.
    A. P. Blokhin, N. A. Borisevich, I. I. Kalosha, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR 238, 123 (1978).ADSGoogle Scholar
  38. 38.
    T. Yamaguchi, N. Matubayasi, and M. Nakahara, J. Phys. Chem. A 108, 1319 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. P. Blokhin
    • 1
  • M. F. Gelin
    • 1
  • O. V. Buganov
    • 1
  • V. L. Dubovski
    • 1
  • S. A. Tikhomirov
    • 1
  • G. B. Tolstorozhev
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations