Advertisement

Optics and Spectroscopy

, Volume 102, Issue 4, pp 503–509 | Cite as

Fluorescence quenching of vaporous polycyclic aromatic hydrocarbons by oxygen

  • G. A. Zalesskaya
  • F. Piuzzi
  • E. G. Sambor
Spectroscopy of Atoms and Molecules

Abstract

The fluorescence quenching by oxygen of vapors of nine polycyclic aromatic hydrocarbons with strongly different oxidation potentials 0.44 eV < E ox < 1.61 eV (anthracene, 9-methylanthracene, 2-aminoanthracene, 9,10-dibromanthracene, pyrene, chrysene, phenanthrene, fluoranthene, and carbazole) is studied. From the dependences of the fluorescence decay rates and intensities on the oxygen pressure P O2, the quenching rate constants k S O2 for the excited singlet states S 1 and the fraction f S O2 of the S 1 states quenched by oxygen are estimated. At P O2 = 5 Torr, the k S O2 constants vary from 1.2 × 107 to 3.0 × 105 s−1 Torr−1, while the fraction of the quenched excited singlet states changes from 0.1 (fluoranthene) to 0.7 (chrysene) and 0.8 (pyrene). The dependences of k S O2 on the photophysical and electron-donor characteristics of the fluorescing compounds are analyzed. It is shown that, in the gas phase of anthracene and its derivatives, the magnitudes of k S O2 are limited by the rate constants of gas-kinetic collisions k gk and do not depend on the electron-donor characteristics of fluorophores, while the fraction of quenched states f S O2 changes with the oxidation potential. For compounds with k S O2 < k gk, both the rate constants k S O2 and the fraction of quenched states f S O2 depend on the E ox of sensitizers, which demonstrates an important role played by the charge-transfer interactions in quenching of the S 1 states. The dependence of the rate constants k S O2 on the free energy of electron transfer ΔG et is considered.

PACS numbers

33.50.Hv 34.70.+e 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. J. Turro, Modern Molecular Photochemistry (Univ. Science Books, Mill Valley, 1991).Google Scholar
  2. 2.
    C. Schweizer and R. Schmidt, Chem. Rev. 103, 1685 (2003).Google Scholar
  3. 3.
    E. J. Bowen, Trans. Faraday Soc. 50, 97 (1954).CrossRefGoogle Scholar
  4. 4.
    B. Stevens, Trans. Faraday Soc. 51, 610 (1955).CrossRefGoogle Scholar
  5. 5.
    W. R. Ware and P. T. Cunningham, J. Chem. Phys. 43, 3826 (1965).CrossRefGoogle Scholar
  6. 6.
    W. R. Ware and J. K. Lee, J. Chem. Phys. 49, 217 (1968).CrossRefGoogle Scholar
  7. 7.
    T. Brewer, J. Am. Chem. Soc. 93, 775 (1971).CrossRefGoogle Scholar
  8. 8.
    R. G. Brown and D. Phillips, J. Chem. Soc., Faraday Trans. 70, 630 (1974).CrossRefGoogle Scholar
  9. 9.
    U. S. Tasic and E. R. Davidson, J. Phys. Chem. 107, 3552 (2003).Google Scholar
  10. 10.
    L. Sassu, L. Perezzani, W. A. Ivancic, et al., Appl. Spectrosc. 55(3), 307 (2001).CrossRefADSGoogle Scholar
  11. 11.
    T. J. Whitaker and B. A. Bushaw, J. Phys. Chem. 85, 2180 (1981).CrossRefGoogle Scholar
  12. 12.
    A. A. Abdel-Shafi and F. Wilkinson, J. Phys. Chem. A 104, 5747 (2000).CrossRefGoogle Scholar
  13. 13.
    F. Wilkinson, D. J. McGarvey, and A. F. Olea, J. Am. Chem. Soc. 115, 12144 (1993).CrossRefGoogle Scholar
  14. 14.
    C. Sato, K. Kikuchi, K. Okamura, et al., J. Phys. Chem. 99, 16925 (1995).CrossRefGoogle Scholar
  15. 15.
    F. Tanaka, T. Furuta, M. Okamoto, and S. Hirayama, Phys. Chem. Chem. Phys. 6, 1219 (2004).CrossRefGoogle Scholar
  16. 16.
    B. F. Minaev, Zh. Prikl. Spektrosk. 42(5), 766 (1985).Google Scholar
  17. 17.
    J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1963).Google Scholar
  18. 18.
    G. A. Zalesskaya, D. L. Yakovlev, E. G. Sambor, and D. V. Prikhodchenko, Opt. Spektrosk. 90(6), 596 (2001) [Opt. Spectrosc. 90 (6), 526 (2001)].Google Scholar
  19. 19.
    G. A. Zalesskaya, E. G. Sambor, and N. N. Belyĭ, Opt. Spektrosk. 96(4), 559 (2004) [Opt. Spectrosc. 96 (4), 503 (2004)].CrossRefGoogle Scholar
  20. 20.
    G. A. Zalesskaya, E. G. Sambor, and N. N. Bely, J. Fluoresc, 14, 173 (2004).CrossRefGoogle Scholar
  21. 21.
    M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • G. A. Zalesskaya
    • 1
  • F. Piuzzi
    • 2
  • E. G. Sambor
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Laboratoire Francis PerrinCentre de SeclayGif-sur-Yvette CedexFrance

Personalised recommendations