Optics and Spectroscopy

, Volume 102, Issue 3, pp 318–329 | Cite as

Investigation of photoionization and photodissociation of an oxygen molecule by the method of coupled differential equations

  • Ph. V. Demekhin
  • D. V. Omel’yanenko
  • B. M. Lagutin
  • V. L. Sukhorukov
  • L. Werner
  • A. Ehresmann
  • K.-H. Schartner
  • H. Schmoranzer
Spectroscopy of Atoms and Molecules


The photoionization and photodissociation of an oxygen molecule are investigated theoretically by the method of coupled differential equations. The molecular orbitals of the core are calculated in the MO LCAO approximation. The molecular orbitals of a photoelectron in the discrete and continuous spectra are determined by the single-center method. The wave functions of vibrational motion of the oxygen molecule are obtained within the diabatic approach. The described method is used for calculating the predissociation and autoionization widths of the 2σ u −1 (c 4Σ u )ng, v Rydberg states of the oxygen molecule. The total cross sections of the resonant photoionization and neutral predissociation calculated for the oxygen molecule in the excitation energy range 20.6–24.8 eV are in good agreement with the available experimental data.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Wayne, Chemistry of Atmosphere: An Introduction to the Chemistry of the Atmosphere of Earth, the Planets, and Their Satellites (Clarendon, Oxford, 1991).Google Scholar
  2. 2.
    Y. Hatano, Phys. Rep. 313, 109 (1999).CrossRefADSGoogle Scholar
  3. 3.
    M. Ukai, S. Machida, K. Kameta, et al., Phys. Rev. Lett. 74, 239 (1995).CrossRefADSGoogle Scholar
  4. 4.
    H. Liebel, S. Lauer, F. Vollweiler, et al., Phys. Lett. A 267, 357 (2000).CrossRefADSGoogle Scholar
  5. 5.
    H. Liebel, A. Ehresmann, H. Schmoranzer, et al., J. Phys. B 35, 895 (2002).CrossRefADSGoogle Scholar
  6. 6.
    Y. Hikosaka, P. Lablanquie, and M. Ahmad, J. Phys. B 36, 4311 (2003).CrossRefADSGoogle Scholar
  7. 7.
    A. Ehresmann, L. Werner, S. Klumpp, et al., J. Phys. B 37, 4405 (2004).CrossRefADSGoogle Scholar
  8. 8.
    N. H. F. Beebe, E. W. Thulstrup, and A. Andersen, J. Chem. Phys. 64, 2080 (1976).CrossRefADSGoogle Scholar
  9. 9.
    K. Tanaka and M. Yoshimine, J. Chem. Phys. 70, 1626 (1979).CrossRefADSGoogle Scholar
  10. 10.
    M. Evans, S. Stimson, C. Y. Ng, and C. W. Hsu, J. Chem. Phys. 19, 1285 (1998).CrossRefADSGoogle Scholar
  11. 11.
    S. L. Sorensen, J. Tulkki, E. Rachlew-Kallne, et al., Phys. Rev. A 50, 1218 (1994).CrossRefADSGoogle Scholar
  12. 12.
    D. M. Bishop, Adv. Quant. Chem. 3, 25 (1967).CrossRefGoogle Scholar
  13. 13.
    V. L. Sukhorukov, V. F. Demekhin, V. A. Yavna, et al., Koord. Khim. 9, 158 (1983).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, New York, 1977).Google Scholar
  15. 15.
    H. Lefebvre-Brion, Perturbation in the Spectra of Diatomic Molecules (Academic, London, 1986).Google Scholar
  16. 16.
    V. Brems, M. Desouter-Lecomte, and J. Lievin, J. Chem. Phys. 14, 2222 (1996).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Samarskiĭ, Introduction into Numerical Methods (Nauka, Moscow, 1982) [in Russian].Google Scholar
  18. 18.
    M. Ya. Amus’ya and L. V. Chernysheva, Automated System for Studying Atomic Structure (Nauka, Leningrad, 1983) [in Russian].Google Scholar
  19. 19.
    P. G. Burke and M. J. Seaton, Methods in Computational Physics (Academic, London, 1971), Vol. 10, pp. 1–80.Google Scholar
  20. 20.
    T. Aberg and G. Howat, in Encyclopedia of Physics (Springer, Berlin, 1982), Vol. 31, pp. 469–619.Google Scholar
  21. 21.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed. (McGraw-Hill, New York, 1968; Nauka, Moscow, 1978).Google Scholar
  22. 22.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  23. 23.
    T. H. Dunning, J. Chem. Phys. 55, 716 (1971).CrossRefADSGoogle Scholar
  24. 24.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).Google Scholar
  25. 25.
    M. Ya. Amus’ya, The Photoelectric Effect in Atoms (Nauka, Moscow, 1987) [in Russian].Google Scholar
  26. 26.
    S. V. Lavrent’ev, M. E. Vasil’eva, I. D. Petrov, and V. L. Sukhorukov, Opt. Spektrosk. 69(2), 307 (1990) [Opt. Spectrosc. 69 (2), 186 (1990)].Google Scholar
  27. 27.
    P. Lin and R. R. Lucchese, J. Chem. Phys. 116, 8863 (2002).CrossRefADSGoogle Scholar
  28. 28.
    S. K. Semenov, N. A. Cherepkov, G. H. Fecher, and G. Schonhense, Phys. Rev. A 61, 032704 (2000).Google Scholar
  29. 29.
    H. P. Kelly, S. C. Carter, and B. E. Norum, Phys. Rev. A 25, 2052 (1982).CrossRefADSGoogle Scholar
  30. 30.
    A. Gerwer, C. Asaro, B. V. McKoy, and P. W. Langhoff, J. Chem. Phys. 72, 713 (1980).CrossRefADSGoogle Scholar
  31. 31.
    A. R. Samson, J. L. Gardner, and G. N. Haddad, J. Electron. Spectrosc. Relat. Phenom. 12, 281 (1977).CrossRefGoogle Scholar
  32. 32.
    C. E. Brion, K. H. Tan, M. J. van der Wiel, and Ph. E. van der Leeuw, J. Electron. Spectrosc. Relat. Phenom. 17, 11 (1979).CrossRefGoogle Scholar
  33. 33.
    R. C. J. Wu, J. Quant. Spectr. Radiat. Transfer 37, 1 (1987).CrossRefADSGoogle Scholar
  34. 34.
    P. Baltzer, B. Wannberg, L. Karlsson, et al., Phys. Rev. A 45, 4374 (1992).CrossRefADSGoogle Scholar
  35. 35.
    K. Ellis, R. I. Hall, L. Avaldi, et al., J. Phys. B 27, 3415 (1994).CrossRefADSGoogle Scholar
  36. 36.
    Y. Lu, Z. X. He, J. N. Cutler, et al., J. Electron. Spectrosc. Relat. Phenom. 94, 135 (1998).CrossRefGoogle Scholar
  37. 37.
    M. Richard-Viard, O. Dutuit, M. Ait-Kaci, and P. M. Guyon, J. Phys. B 20, 2247 (1987).CrossRefADSGoogle Scholar
  38. 38.
    D. M. P. Holland, D. A. Show, and S. M. McSweeney, Chem. Phys. 173, 315 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Ph. V. Demekhin
    • 1
  • D. V. Omel’yanenko
    • 1
  • B. M. Lagutin
    • 1
  • V. L. Sukhorukov
    • 1
  • L. Werner
    • 2
  • A. Ehresmann
    • 2
  • K.-H. Schartner
    • 3
  • H. Schmoranzer
    • 4
  1. 1.Rostov State University of Transport CommunicationsRostov-on-DonRussia
  2. 2.Institute of PhysicsUniversity of KasselKasselGermany
  3. 3.First Institute of PhysicsJustus-Liebig University of GiessenGiessenGermany
  4. 4.Department of PhysicsKaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations