Advertisement

Optics and Spectroscopy

, Volume 102, Issue 2, pp 233–241 | Cite as

Spectra of resonance light scattering of gold nanoshells: Effects of polydispersity and limited electron free path

  • B. N. Khlebtsov
  • V. A. Bogatyrev
  • L. A. Dykman
  • N. G. Khlebtsov
Condensed-Matter Spectroscopy

Abstract

The effects of the polydispersity of the structure of gold nanoshells and of the limited electron free path in a thin metal layer on the spectra of resonance light scattering of a suspension of two-layer nanoparticles are studied theoretically and experimentally for the first time. It is shown theoretically that both factors lead to a broadening of the plasmon resonance in light scattering and to a change in its magnitude. To experimentally test the calculations, two samples of nanoshells based on gold and silicon dioxide (silica) were synthesized. Nanoshells of sample 1 have a diameter of the core of 90 nm and a broad thickness distribution of shells (with an average value of 30 nm), whereas nanoshells of sample 2 have a diameter of the core of 70 nm and a narrow thickness distribution of shells (with an average value of 12 nm). The core diameter, the shell thickness, and the polydispersity of the structure of nanoparticles are estimated by dynamic light scattering. It is shown that the simulation of the optical properties of nanoparticles with their parameters estimated from the dynamic light scattering data makes it possible to obtain good agreement between experimental and theoretical spectra of light scattering. For nanoshells of sample 1, the inhomogeneous broadening of the scattering spectrum is completely determined by the polydispersity; therefore, the bulk constants of gold can be used in simulation of the spectra of such nanoshells. The main mechanism of the broadening for nanoshells of sample 2 is connected with the limitation of the free path length of electrons, whereas the contribution from the thickness distribution of shells can be neglected.

PACS numbers

78.67.Bf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Hirsch, A. M. Gobin, A. R. Lowery, et al., Ann. Biomed. Eng 34, 15 (2006).CrossRefGoogle Scholar
  2. 2.
    M. L. Brongersma, Nat. Mater. 2, 296 (2003).CrossRefADSGoogle Scholar
  3. 3.
    J. West and N. Halas, Curr. Opin. Biotechnol. 11, 215 (2000).CrossRefGoogle Scholar
  4. 4.
    L. R. Hirsch, J. B. Jackson, A. Lee, et al., Anal. Chem. 75, 2377 (2003).CrossRefGoogle Scholar
  5. 5.
    L. R. Hirsch, R. J. Stafford, J. A. Bankson, et al., Proc. Natl. Acad. Sci. USA 23, 13549 (2003).CrossRefADSGoogle Scholar
  6. 6.
    C. Loo, A. Lin, L. Hirsch, et al., Technol. Cancer Res. Treat. 3, 33 (2004).Google Scholar
  7. 7.
    C. Loo, L. Hirsch, M. Lee, et al., Opt. Lett. 30, 1012 (2005).CrossRefADSGoogle Scholar
  8. 8.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. Halas, Chem. Phys. Lett. 288, 243 (1998).CrossRefGoogle Scholar
  9. 9.
    N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, Opt. Spektrosk. 98(1), 82 (2005) [Opt. Spectrosc. 98 (1), 77 (2005)].CrossRefGoogle Scholar
  10. 10.
    N. Halas, MR Bulletin 30, 362 (2005).Google Scholar
  11. 11.
    T. Pham, J. B. Jackson, N. Halas, and LeeT. Randall, Langmuir 18, 4915 (2002).CrossRefGoogle Scholar
  12. 12.
    C. L. Nehl, N. K. Grady, G. P. Goodrich, et al., Nano Lett. 4, 2355 (2005).CrossRefGoogle Scholar
  13. 13.
    D. A. Stuart, A. J. Haes, C. R. Yonzon, et al., IEE Proc. Nanobiotechnol. 152, 13 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Pellegrino, S. Kudera, T. Liedl, et al., Small 1, 49 (2005).CrossRefGoogle Scholar
  15. 15.
    B. N. Khlebtsov and N. G. Khlebtsov, J. Biomed. Opt. 11, 44002 (2006).CrossRefGoogle Scholar
  16. 16.
    K. Chen, Ya. Liu, G. Ameer, and V. Backman, J. Biomed. Opt. 10, 024005 (2005).Google Scholar
  17. 17.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Heidelberg, 1995).Google Scholar
  18. 18.
    C. G. Granqvist and O. Hunderi, Z. Phys. B 30, 47 (1978).CrossRefGoogle Scholar
  19. 19.
    S. M. Kachan and A. N. Ponyavina, J. Mol. Struct. 267, 563 (2001).Google Scholar
  20. 20.
    S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, Phys. Rev. B 66, 155431 (2002).Google Scholar
  21. 21.
    V. A. Bogatyrev, L. A. Dykman, Ya. M. Krasnov, et al., Kolloidn. Zh. 62, 745 (2002).Google Scholar
  22. 22.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, et al., J. Quant. Spectrosc. Radiat. Transfer 89, 133 (2004).CrossRefADSGoogle Scholar
  23. 23.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, et al., Kolloidn. Zh. 65, 622 (2003).Google Scholar
  24. 24.
    N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transfer 89, 143 (2004).CrossRefADSGoogle Scholar
  25. 25.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).Google Scholar
  26. 26.
    Z. C. Wu and Y. P. Wang, Radio Sci. 26, 1393 (1991).ADSGoogle Scholar
  27. 27.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Mel’nikov, Opt. Spektrosk. 80(1), 113 (1996) [Opt. Spectrosc. 80 (1), 113 (1996)].ADSGoogle Scholar
  28. 28.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, J. Colloid Interface Sci. 180, 436 (1996).CrossRefGoogle Scholar
  29. 29.
    E. A. Coronado and G. C. Schatz, J. Chem. Phys. 119, 3926 (2003).CrossRefADSGoogle Scholar
  30. 30.
    M. Kerker, J. Colloid Interface Sci. 105(2), 297 (1985).CrossRefGoogle Scholar
  31. 31.
    W. T. Doyle, Phys. Rev. B 39, 9852 (1989).CrossRefADSGoogle Scholar
  32. 32.
    A. Kawabata and R. Kubo, J. Phys. Soc. Jpn. 21, 1765 (1966).CrossRefGoogle Scholar
  33. 33.
    S. Bruzzone, G. P. Arrighini, and C. Guidotti, Chem. Phys. 291, 125 (2003).CrossRefGoogle Scholar
  34. 34.
    M. Quinten, Z. Phys. B 101, 211 (1996).CrossRefGoogle Scholar
  35. 35.
    L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, Nanotecnology 16, 158 (2005).CrossRefADSGoogle Scholar
  36. 36.
    L. B. Scaffardi and J. O. Tocho, Nanotecnology 17, 1309 (2006).CrossRefADSGoogle Scholar
  37. 37.
    C. Sönnichsen, T. Franzl, T. Wilk, et al., Phys. Rev. Lett. 88, 077402 (2002).Google Scholar
  38. 38.
    S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Nano Lett. 5, 515 (2005).CrossRefGoogle Scholar
  39. 39.
    O. L. Muskens, N. Del Fatti, F. Vallée, et al., Appl. Phys. Lett. 88, 0634109 (2006).Google Scholar
  40. 40.
    S. M. Kachan and A. N. Ponyavina, Reviews and Short Notes to Nanomeeting 99, p. 103 (1999).Google Scholar
  41. 41.
    B. N. Khlebtsov and N. G. Khlebtsov, Proc. SPIE-Int. Soc. Opt. Eng. 6164, 2 (2006).Google Scholar
  42. 42.
    V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and N. G. Khlebtsov, Opt. Spektrosk. 96(1), 139 (2004) [Opt. Spectrosc. 96 (1), 128 (2004)].CrossRefGoogle Scholar
  43. 43.
    W. Stober, A. Fink, and J. Bohn, J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
  44. 44.
    B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, New York, 2000).Google Scholar
  45. 45.
    G. B. Irani, T. Huen, and F. Wooten, J. Opt. Soc. Am. 61, 128 (1971).Google Scholar
  46. 46.
    M. Otter, Z. Phys. 161, 163 (1961).CrossRefGoogle Scholar
  47. 47.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).CrossRefADSGoogle Scholar
  48. 48.
  49. 49.
    B. N. Khlebtsov, E. M. Chumakov, S. V. Semyonov, et al., Proc. SPIE-Int. Soc. Opt. Eng. 5475, 12 (2004).ADSGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
    V. V. Klyubin and V. N. Bungov, Kolloidn. Zh. 60(3), 344 (1998).Google Scholar
  53. 53.
    N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko, (Kluwer, New York, 2004), Vol. 161, pp. 265–308.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • B. N. Khlebtsov
    • 1
  • V. A. Bogatyrev
    • 1
    • 2
  • L. A. Dykman
    • 1
  • N. G. Khlebtsov
    • 1
    • 2
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations