Optics and Spectroscopy

, Volume 102, Issue 2, pp 227–232 | Cite as

Multiphoton generation of electron-hole pairs involving free carriers in an indirect-gap crystal

  • A. V. Ivanov
  • E. Yu. Perlin
Condensed-Matter Spectroscopy


The paper reports on a study of nonlinear absorption of high-intensity laser radiation in the case where the photon energy is less than one half of the indirect-gap width in a crystal. The deficiency in the energy needed for two-photon excitation of the electron-hole pair is made up by the kinetic energy of free electrons, which was acquired in intraband nonlinear absorption of light. The probabilities of Auger-type indirect two-photon interband transitions involving free electrons have been calculated by perturbation theory. It is shown that, for a free-carrier concentration in the conduction band n c ≳ 1015 cm−3, and the radiation intensity range of interest for the experiment, j ∼ 3–10 GW/cm2, the calculated probabilities of such transitions exceed by several orders of magnitude those of “conventional” direct and indirect (involving phonons) multiphoton transitions which can take place in the system considered.

PACS numbers

42.50.Hz 78.20.-e 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yu. Perlin, A. V. Fedorov, and M. B. Kashevnik, Zh. Éksp. Teor. Fiz. 85(4) (1983) [Sov. Phys. JETP 58 (4), 787 (1983)].Google Scholar
  2. 2.
    A. M. Danishevskiĭ, E. Yu. Perlin, and A. V. Fedorov, Zh. Éksp. Teor. Fiz. 93(4), 1319 (1987) [Sov. Phys. JETP 66 (4), 747 (1987)].Google Scholar
  3. 3.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spektrosk. 100(1), 69 (2006) [Opt. Spectrosc. 100 (1), 49 (2006)].CrossRefGoogle Scholar
  4. 4.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskiĭ, Zh. Éksp. Teor. Fiz. 128(2), 411 (2005) [JETP 101 (2), 357 (2005)].Google Scholar
  5. 5.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskiĭ, Izv. Akad. Nauk, Ser. Fiz. 69(8), 1129 (2005).Google Scholar
  6. 6.
    E. Yu. Perlin and D. I. Stasel’ko, Opt. Spektrosk. 88(1), 57 (2000) [Opt. Spectrosc. 88 (1), 50 (2000)].CrossRefGoogle Scholar
  7. 7.
    E. Yu. Perlin and D. I. Stasel’ko, Opt. Spektrosk. 98(6), 944 (2005) [Opt. Spectrosc. 98 (6), 844 (2005)].CrossRefGoogle Scholar
  8. 8.
    V. M. Mikhaĭlov and D. I. Stasel’ko, Opt. Spektrosk. 75, 973 (1993) [Opt. Spectrosc. 75, 574 (1993)].Google Scholar
  9. 9.
    E. Yu. Perlin, A. V. Ivanov, and D. I. Saselki, in Proceedings of the International Quantum Electronics Conference IQEC/LAT 2002 (Moscow, Russia, 2002), Tech. Digest QWE2, p. 385.Google Scholar
  10. 10.
    I. B. Levinson and B. N. Levinskiĭ, Zh. Éksp. Teor. Fiz. 71(1), 300 (1976) [Sov. Phys. JETP 44 (1), 156 (1976)].Google Scholar
  11. 11.
    R. J. Glauber, Grenoble University Summer School 1964 in Quantum Optics and Electronics, Ed. by C. Dewitt (Gordon and Breach, New York 1965; Mir, Moscow, 1966).Google Scholar
  12. 12.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Dover, New York, 1968; Mir, Moscow, 1970).Google Scholar
  13. 13.
    V. M. Buĭmistrov and V. P. Oleĭnik, in Nonlinear Optics (Nauka, Novosibirsk, 1968) [in Russian], p. 107.Google Scholar
  14. 14.
    V. A. Kovarskii and E. Yu. Perlin, Phys. Stat. Sol. B 45(1), 47 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. V. Ivanov
    • 1
  • E. Yu. Perlin
    • 1
  1. 1.Information and Optical Technologies CenterSt. Petersburg University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations