Advertisement

Optics and Spectroscopy

, Volume 102, Issue 2, pp 149–158 | Cite as

Theoretical study of photoionization of the isoelectronic sequence Rb+, Sr2+, and Y3+

  • Ph. V. Demekhin
  • I. D. Petrov
  • B. M. Lagutin
  • V. L. Sukhorukov
  • A. Neogi
  • P. Yeates
  • E. T. Kennedy
  • M. W. D. Mansfield
  • J. T. Costello
Spectroscopy of Atoms and Molecules

Abstract

The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/ɛ)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p 1/2 mirror resonance in the partial 4p 1/2 and 4p 3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.

PACS numbers

03.65.-w 31.15.Ne 32.10.Hq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Aufdenberg, P. H. Hauschildt, S. N. Shore, and E. Baron, Astrophys. J. 498, 837 (1998).CrossRefADSGoogle Scholar
  2. 2.
    J. Lindl, Phys. Plasmas 2, 3933 (1995).CrossRefADSGoogle Scholar
  3. 3.
    H. Daido, Rep. Prog. Phys. 65, 1513 (2002).CrossRefADSGoogle Scholar
  4. 4.
    M. Ya. Amus’ya, The Photoelectric Effect in Atoms (Nauka, Moscow, 1987) [in Russian].Google Scholar
  5. 5.
    V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992).CrossRefADSGoogle Scholar
  6. 6.
    J. B. West, J. Phys. B 34, R45 (2001).CrossRefADSGoogle Scholar
  7. 7.
    P. van Kampen, G. O’sullivan, V. K. Ivanov, et al., Phys. Rev. Lett. 78, 3082 (1997).CrossRefADSGoogle Scholar
  8. 8.
    J. W. Cooper, Phys. Rev. 128, 681 (1962).CrossRefADSGoogle Scholar
  9. 9.
    B. M. Lagutin, Ph. V. Demekhin, I. D. Petrov, et al., J. Phys. B 32, 1795 (1999).CrossRefADSGoogle Scholar
  10. 10.
    A. Neogi, E. T. Kennedy, J. P. Mosnier, et al., in Abstracts of the 34th Conference of the European Group for Atomic Spectroscopy (Sofia, Bulgaria, 2002), p. 200.Google Scholar
  11. 11.
    A. Neogi, E. T. Kennedy, J. P. Mosnier, et al., Phys. Rev. A 67, 042 607 (2003).Google Scholar
  12. 12.
    P. Yeates, E. T. Kennedy, J. P. Mosnier, et al., J. Phys. B 27, 241 (2004).Google Scholar
  13. 13.
    V. K. Ivanov and M. A. Koulov, Proc. SPIE-Int. Soc. Opt. Eng. 4627, 93 (2002).ADSGoogle Scholar
  14. 14.
    V. K. Ivanov and M. Koulov, Proc. SPIE-Int. Soc. Opt. Eng. 5127, 31 (2003).ADSGoogle Scholar
  15. 15.
    B. M. Lagutin, F. V. Demekhin, I. D. Petrov, et al., Zh. Strukt. Khim. 39, 992 (1998).Google Scholar
  16. 16.
    H. Schmoranzer, S. Lauer, F. Vollweiler, et al., J. Phys. B 30, 4463 (1997).CrossRefADSGoogle Scholar
  17. 17.
    Ph. V. Demekhin, I. D. Petrov, B. M. Lagutin, et al., J. Phys. B 38, 3129 (2005).CrossRefADSGoogle Scholar
  18. 18.
    V. L. Sukhorukov, I. D. Petrov, and V. F. Demekhin, Opt. Spektrosk. 58(6), 1365 (1985) [Opt. Spectrosc. 58 (6), 836 (1985)].Google Scholar
  19. 19.
    B. M. Lagutin, I. D. Petrov, V. L. Sukhorukov, et al., J. Phys. B 29, 937 (1996).CrossRefADSGoogle Scholar
  20. 20.
    R. Kau, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, Z. Phys. D 39, 267 (1997).CrossRefGoogle Scholar
  21. 21.
    C. E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, 1971), Vols. 1–3.Google Scholar
  22. 22.
    B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, et al., J. Phys. B 33, 2467 (1994).Google Scholar
  23. 23.
    U. Fano, Phys. Rev. 124, 1866 (1961).zbMATHCrossRefADSGoogle Scholar
  24. 24.
    K. Codling and R. P. Madden, J. Res. Natl. Bur. Stand. A 76, 1 (1972).Google Scholar
  25. 25.
    V. L. Sukhorukov, B. M. Lagutin, I. D. Petrov, et al., J. Phys. B 27, 241 (1994).CrossRefADSGoogle Scholar
  26. 26.
    F. H. Mies, Phys. Rev. 175, 164 (1968).CrossRefADSGoogle Scholar
  27. 27.
    S. L. Sorensen, T. Aberg, J. Tulkki, et al., Phys. Rev. A 50, 1218 (1994).CrossRefADSGoogle Scholar
  28. 28.
    C. N. Liu and A. F. Starace, Phys. Rev. A 59, R1731 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Ph. V. Demekhin
    • 1
  • I. D. Petrov
    • 1
  • B. M. Lagutin
    • 1
  • V. L. Sukhorukov
    • 1
  • A. Neogi
    • 2
  • P. Yeates
    • 2
  • E. T. Kennedy
    • 2
  • M. W. D. Mansfield
    • 3
  • J. T. Costello
    • 2
  1. 1.Rostov State Transport UniversityRostov-on-DonRussia
  2. 2.National Centre for Plasma Science and TechnologyDublin City UniversityDublinIreland
  3. 3.Department of PhysicsUniversity CollegeCorkIreland

Personalised recommendations