Optics and Spectroscopy

, Volume 101, Issue 3, pp 450–457

Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal

  • A. V. Volyar
  • T. A. Fadeeva
Nonlinear and Quantum Optics

Abstract

A solution to the paraxial wave equation for Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal is found and analyzed. It is shown that the beams with a complex argument form a complete group of the solution, while the beams with a real argument satisfy the equation only for an arbitrary radial index, with the azimuthal index being fixed and equal to l = 1. The evolution of phase singularities is considered by the example of transformation of the structure of topological multipoles and generation of optical vortices.

PACS numbers

42.25.Ja 42.60.Jf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Ilyenkov, A. I. Khizhnyak, L. V. Kremnitskaya, et al., Appl. Phys. B 62, 465 (1996).CrossRefADSGoogle Scholar
  2. 2.
    M. Soskin and M. Vasnetsov, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 2001), Vol. 42, pp. 219–276.Google Scholar
  3. 3.
    V. N. Belyi, T. A. King, N. S. Kazak, et al., Proc. SPIE-Int. Soc. Opt. Eng. 4403, 229 (2001).ADSGoogle Scholar
  4. 4.
    A. V. Volyar and T. A. Fadeeva, Opt. Spektrosk. 94(2), 264 (2003) [Opt. Spectrosc. 94 (2), 235 (2003)].CrossRefGoogle Scholar
  5. 5.
    Yu. A. Egorov, A. V. Volyar, and T. A. Fadeyeva, J. Opt. A 6, 217 (2004).ADSGoogle Scholar
  6. 7.
    R. Vlokh, A. Volyar, O. Mys, and O. Krupych, Ukr. J. Phys. Opt 4(2), 90 (2003).Google Scholar
  7. 6.
    M. V. Berry, J. Opt. A 6, 289 (2004).ADSGoogle Scholar
  8. 8.
    N. N. Rozanov, Opt. Spektrosk. 93(5), 808 (2002) [Opt. Spectrosc. 93 (5), 746 (2002)].CrossRefGoogle Scholar
  9. 9.
    A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. 17, 163 (2003).ADSGoogle Scholar
  10. 10.
    A. V. Volyar and T. A. Fadeyeva, Ukr. J. Phys. Opt 5(3), 81 (2004).Google Scholar
  11. 11.
    A. M. Gocharenko, Gaussian Light Beams (Nauka i Tekhnika, Moscow, 1977) [in Russian].Google Scholar
  12. 12.
    E. Zaunderer, J. Opt. Soc. Am. A 3(4), 465 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    H. Kogelnik and T. Li, Proc. IEEE 54, 1312 (1966).CrossRefGoogle Scholar
  14. 14.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun, 2nd ed. (Dover, New York, 1971; Nauka, Moscow, 1979).Google Scholar
  15. 15.
    V. G. Shvedov, A. V. Volyar, and T. A. Fadeeva, Pis’ma Zh. Tekh. Fiz. 25 (1999) [Tekh. Fiz. Lett. 25, 203 (1999)].Google Scholar
  16. 16.
    J. F. Nye, Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations (Institute of Physics Publishing Bristol and Philadelphia, Bristol, 1999).MATHGoogle Scholar
  17. 17.
    A. V. Volyar and T. A. Fadeeva, Opt. Spektrosk. 92(2), 285 (2002) [Opt. Spectrosc. 92 (2), 243 (2002)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Volyar
    • 1
  • T. A. Fadeeva
    • 1
  1. 1.National Taurida Vernadsky UniversitySimferopolUkraine

Personalised recommendations