Optics and Spectroscopy

, Volume 100, Issue 6, pp 807–817 | Cite as

Optimum basis sets of spherical Gaussian functions and their structure for high-precision calculations of the energies of molecules in the Hartree-Fock approximation

  • V. N. Glushkov
Spectroscopy of Atoms and Molecules

Abstract

Specific features of the construction of variationally optimized basis sets providing a high accuracy in calculations of molecular energies in the Hartree-Fock approximation are described. Equations for the optimization of basis sets are obtained for systems with closed and open electronic shells and the structure of an energy hypersurface in the space of nonlinear parameters is considered. The structure of optimum basis sets is studied to develop simple models for generation of orbital exponents and centers of atomic functions. It is shown that, for different molecules, there exist characteristic features of optimum basis sets that are retained with increasing size of a set. Possible strategies for generation of the parameters of basis sets are proposed and preliminary results of their application to the calculation of the ground-state energies of simple diatomic molecules are discussed.

PACS numbers

31.25.N 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Boys, Proc. R. Soc. London, Ser. A 200, 542 (1950).MATHADSCrossRefGoogle Scholar
  2. 2.
    I. Shavitt, in Methods of Computational Physics, Ed. by B. Adler, S. Fernbach, and M. Rotenberg (Academic, New York, 1963), Vol. 2.Google Scholar
  3. 3.
    I. Shavitt, Mol. Phys. 94, 3 (1998).CrossRefADSGoogle Scholar
  4. 4.
    A. V. Luzanov, Covariant Methods and Electronic Models of Molecules (Folio, Kharkov, 1998) [in Russian].Google Scholar
  5. 5.
    R. J. Bartlett, in Modern Electronic Structure Theory, Ed. by D. R. Yarkony (World Sci., Singapore, 1995), Part 2, p. 1048.Google Scholar
  6. 6.
    E. Engel and R. M. Dreizler, J. Comput. Chem. 20, 31 (1999).CrossRefGoogle Scholar
  7. 7.
    E. R. Davidson and D. F. Feller, Chem. Rev. 86, 681 (1986).CrossRefGoogle Scholar
  8. 8.
    J. Almolof and P. R. Taylor, Adv. Quantum Chem. 22, 301 (1991).Google Scholar
  9. 9.
    T. Helgaker and P. R. Taylor, in Modern Electronic Structure Theory, Ed. by D. R. Yarkony (World Sci., Singapore, 1995), Part 2, p. 727.Google Scholar
  10. 10.
    S. Wilson, in New Methods in Quantum Theory, Ed. by C. A. Tsipis, V. S. Popov, D. R. Herschbach, and J. S. Avery (Kluwer, Dordrecht, 1996), NATO ASI Ser., p. 437.Google Scholar
  11. 11.
    S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).CrossRefADSGoogle Scholar
  12. 12.
    H. Patridge, J. Chem. Phys. 90, 1043 (1989).CrossRefADSGoogle Scholar
  13. 13.
    M. W. Schmidt and K. Rudenberg, J. Chem. Phys. 71, 3951 (1979).CrossRefADSGoogle Scholar
  14. 14.
    B. Klahn, J. Chem. Phys. 83, 5749 (1985).CrossRefADSGoogle Scholar
  15. 15.
    V. I. Pupyshev and N. F. Stepanov, in Structure and Energetics of Molecules (IKhTI, Ivanovo, 1990), p. 3 [in Russian].Google Scholar
  16. 16.
    R. N. Hill, Int. J. Quantum Chem. 68, 357 (1998).CrossRefGoogle Scholar
  17. 17.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefADSGoogle Scholar
  18. 18.
    D. E. Woon and T. H. Dunning, J. Chem. Phys. 103, 4572 (1995).CrossRefADSGoogle Scholar
  19. 19.
    A. K. Wilson, T. van Mourik, and T. H. Dunning, J. Mol. Struct. 388, 339 (1996).Google Scholar
  20. 20.
    S. Wilson and D. Moncrieff, J. Chem. Phys. 105, 3336 (1996).CrossRefADSGoogle Scholar
  21. 21.
    F. Jensen, J. Chem. Phys. 110, 6601 (1999).CrossRefADSGoogle Scholar
  22. 22.
    A. V. Mitin, Phys. Rev. 62, 010501 (2000).Google Scholar
  23. 23.
    S. Wilson and D. Moncrieff, Mol. Phys. 80, 461 (1993).CrossRefADSGoogle Scholar
  24. 24.
    D. Moncrieff and S. Wilson, J. Phys. B 26, 1605 (1993).CrossRefADSGoogle Scholar
  25. 25.
    S. Wilson, Int. J. Quantum Chem. 60, 47 (1996).CrossRefGoogle Scholar
  26. 26.
    A. Sadlej, Chem. Phys. Lett. 47, 50 (1977).CrossRefADSGoogle Scholar
  27. 27.
    A. Ya. Tsaune and V. N. Glushkov, Ukr. Fiz. Zh. 26, 576 (1981).Google Scholar
  28. 28.
    A. Ya. Tsaune, A. I. Aprasyukhin, and V. Glushkov, Opt. Spektrosk. 44(6), 1195 (1978) [Opt. Spectrosc. 44 (6), 697 (1978)].Google Scholar
  29. 29.
    A. A. Frost, J. Chem. Phys. 47, 3707 (1967).CrossRefADSGoogle Scholar
  30. 30.
    S. Y. Chu and A. A. Frost, J. Chem. Phys. 54, 760 (1971).CrossRefADSGoogle Scholar
  31. 31.
    Yu. A. Borisov and D. G. Musalov, Zh. Strukt. Khim. 23, 10 (1982).Google Scholar
  32. 32.
    M. E. Schwartz and L. J. Schaad, J. Chem. Phys. 46, 4112 (1967).CrossRefADSGoogle Scholar
  33. 33.
    A. I. Aprasyukhin, V. N. Glushkov, V. I. Karliĭchuk, and A. Ya. Tsaune, Teor. Éksp. Khim. 20, 84 (1984).Google Scholar
  34. 34.
    C. F. Bunge, J. A. Barrientos, A. V. Bunge, and J. A. Cogordan, Phys. Rev. 46, 3691 (1992).CrossRefADSGoogle Scholar
  35. 35.
    Yu. B. Malykhanov, R. N. Pravosudov, and V. V. Meshkov, Zh. Strukt. Khim. 41, 217 (2000).Google Scholar
  36. 36.
    Yu. B. Malykhanov and V. V. Meshkov, Zh. Strukt. Khim. 43, 13 (2002).Google Scholar
  37. 37.
    V. N. Glushkov and S. Wilson, Adv. Quantum Chem. 39, 123 (2001).CrossRefGoogle Scholar
  38. 38.
    V. N. Glushkov and S. Wilson, Int. J. Quantum Chem. 89, 237 (2002).CrossRefGoogle Scholar
  39. 39.
    V. N. Glushkov and S. Wilson, Int. J. Quantum Chem. 99, 903 (2004).CrossRefGoogle Scholar
  40. 40.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Frederick Ungar, New York, 1963; Vishcha Shkola, Kharkov, 1977), Vol. 1.MATHGoogle Scholar
  41. 41.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, London, 1981; Mir, Moscow, 1985).MATHGoogle Scholar
  42. 42.
    D. M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972; Mir, Moscow, 1975).MATHGoogle Scholar
  43. 43.
    P. Pulay, Mol. Phys. 17, 197 (1969).CrossRefADSGoogle Scholar
  44. 44.
    P. Pulay, in Modern Electronic Structure Theory, Ed. by D. R. Yarkony (World Sci., Singapore, 1995), Part 2, p. 1191.Google Scholar
  45. 45.
    R. D. Amos, Chem. Phys. Lett. 108, 347 (1984).CrossRefADSGoogle Scholar
  46. 46.
    S. Huzinaga, J. Chem. Phys. 51, 3971 (1969).CrossRefADSGoogle Scholar
  47. 47.
    K. Hirao, J. Chem. Phys. 60, 3215 (1974).MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    R. Carbo and J. M. Riera, Lecture Notes in Chemistry, Ed. by G. Berthier (Springer, Berlin, Heidelberg, New York, 1978), Vol. 5.Google Scholar
  49. 49.
    V. N. Glushkov, Chem. Phys. Lett. 273, 122 (1997).CrossRefADSGoogle Scholar
  50. 50.
    V. N. Glushkov, Int. J. Quantum Chem. 99, 236 (2004).CrossRefGoogle Scholar
  51. 51.
    Yu. V. Rakitskiĭ, S. M. Ustinov, and I. G. Chernorutskiĭ, Numerical Methods for Solving Stiff Problems (Nauka, Moscow, 1987) [in Russian].Google Scholar
  52. 52.
    J. Kobus, Chem. Phys. Lett. 202, 7 (1993).CrossRefADSGoogle Scholar
  53. 53.
    M. Bishop and R. W. Wetmore, Mol. Phys. 26, 145 (1973).CrossRefADSGoogle Scholar
  54. 54.
    H. M. Quiney, V. N. Glushkov, and S. Wilson, Int. J. Quantum Chem. 89, 227 (2002).CrossRefGoogle Scholar
  55. 55.
    H. M. Quiney, V. N. Glushkov, and S. Wilson, Int. J. Quantum Chem. 99, 950 (2004).CrossRefGoogle Scholar
  56. 56.
    G. A. Petersson, T. G. Tensfeldt, and J. A. Montgomery, J. Chem. Phys. 94, 6091 (1991).CrossRefADSGoogle Scholar
  57. 57.
    P. E. Cade and W. M. Huo, J. Chem. Phys. 47, 614 (1967).CrossRefADSGoogle Scholar
  58. 58.
    F. A. Pahl and N. C. Handy, Mol. Phys. 100, 3199 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. N. Glushkov
    • 1
  1. 1.Dnepropetrovsk State UniversityDnepropetrovskUkraine

Personalised recommendations