Optics and Spectroscopy

, Volume 100, Issue 3, pp 419–424 | Cite as

A saturable absorber, coherent population oscillations, and slow light

  • V. S. Zapasskiĭ
  • G. G. Kozlov
Nonlinear and Quantum Optics


The paper presents a critical analysis of publications on one of the methods of creating so-called slow light (light with an anomalously low group velocity) arising due to a high steepness of the refractive index dispersion curve. The method employs, for this purpose, the effect of coherent population oscillations accompanied by burning of a narrow spectral hole in the homogeneously broadened absorption spectrum. The interpretation of the experimental data in the studies under consideration is based on the analysis of the response of a nonlinear medium to a low-frequency intensity modulation of the propagating light beam. We show that all the observations of these papers can be easily interpreted in the framework of the simplest model of a saturable absorber and have nothing to do with the hole burning effect or group velocity reduction.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Casapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).CrossRefADSGoogle Scholar
  2. 2.
    L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).CrossRefADSGoogle Scholar
  3. 3.
    L. W. Hillman, R. V. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).CrossRefADSGoogle Scholar
  4. 4.
    M. Malcuit, R. W. Boyd, L. W. Hillman, et al., J. Opt. Soc. Am. B 1, 73 (1984).ADSGoogle Scholar
  5. 5.
    M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).Google Scholar
  6. 6.
    M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).CrossRefADSGoogle Scholar
  7. 7.
    E. Baldit, K. Bencheikh, P. Monnier, et al., LANL, arXiv: ccsd-00004377 (2005).Google Scholar
  8. 8.
    Zhang Yun-Dong, Fan Bao-Hua, Yuan Ping, and Ma ZuGuang, Chinese Phys. Lett. 21(1), 87 (2004).CrossRefADSGoogle Scholar
  9. 9.
    R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023 801 (2005).Google Scholar
  10. 10.
    A. B. Matsko, D. V. Strekalov, and L. Maleki, Opt. Expr. 13, 2210 (2005).CrossRefADSGoogle Scholar
  11. 11.
    W. E. Lamb, Jr., Phys. Rev. A 134, 1429 (1964).CrossRefADSGoogle Scholar
  12. 12.
    S. E. Schwarz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).CrossRefADSGoogle Scholar
  13. 13.
    E. V. Baklanov and V. P. Chebotaev, Zh. Éksp. Teor. Fiz. 61, 922 (1971).Google Scholar
  14. 14.
    M. Sargent, Phys. Rep. 43, 223 (1978).CrossRefADSGoogle Scholar
  15. 15.
    J. J. Song, J. H. Lee, and M. D. Levenson, Phys. Rev. A 17, 1439 (1978).CrossRefADSGoogle Scholar
  16. 16.
    J. H. Lee, J. J. Song, M. A. F. Scarparo, and M. D. Levenson, Opt. Lett. 5, 196 (1980).ADSGoogle Scholar
  17. 17.
    F. Gires and F. Combaud, J. Phys. 26, 325 (1965).Google Scholar
  18. 18.
    A. C. Selden, Brit. J. Appl. Phys. 18, 743 (1967).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    A. C. Selden, J. Phys. D 3, 1935 (1970).CrossRefADSGoogle Scholar
  20. 20.
    M. Hercher, W. Chu, and D. L. Stockman, IEEE J. Quantum Electron. QE-4, 954 (1968).CrossRefADSGoogle Scholar
  21. 21.
    M. A. Kramer, R. W. Boyd, L. W. Hillman, and C. R. Stroud, J. Opt. Soc. Am. B 2, 1444 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    P.-Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, et al., Opt. Lett. 29, 2291 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. S. Zapasskiĭ
    • 1
  • G. G. Kozlov
    • 1
  1. 1.All-Russia Research Center Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations