Optics and Spectroscopy

, Volume 100, Issue 2, pp 238–244 | Cite as

Propagation of electric fields induced by optical phonons in semiconductor heterostructures

  • I. D. Rukhlenko
  • A. V. Fedorov
Condensed-Matter Spectroscopy

Abstract

The penetration of electric fields accompanying long-wavelength optical phonos from one region of a semiconductor heterostructure to another is investigated. It is proposed to determine the penetration depth of such fields from the relaxation caused by these fields in quantum dots. By the example of a cylindrical Ge quantum dot embedded in a GaP/GaAs heterostructure, it is shown that the electric fields induced by longitudinal optical phonons can penetrate through the interface between semiconductors at distances of about 100 nm.

PACS numbers

42.70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Guo, E. Leobandung, and S. Y. Chou, Science 275, 649 (1997).CrossRefGoogle Scholar
  2. 2.
    T. Itakura and Y. Tokura, Phys. Rev. B 67, 195320 (2003).Google Scholar
  3. 3.
    K. Yano, T. Ishii, T. Sano, et al., Proc. IEEE 87, 633 (1999).CrossRefGoogle Scholar
  4. 4.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205318 (2003).Google Scholar
  5. 5.
    A. V. Fedorov and A. V. Baranov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38(9), 1101 (2004) [Semiconductors 38, 1065 (2004)].Google Scholar
  6. 6.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 218, 219 (2003).CrossRefGoogle Scholar
  7. 7.
    A. V. Fedorov and A. V. Baranov, Opt. Spektrosk. 97(1), 63 (2004) [Opt. Spectrosc. 97, 56 (2004)].CrossRefGoogle Scholar
  8. 8.
    A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978).Google Scholar
  9. 9.
    C. Trallero-Giner, F. Comas, and F. Garcia-Moliner, Phys. Rev. B 50, 1755 (1993).CrossRefADSGoogle Scholar
  10. 10.
    F. Comas, C. Tralero-Giner, and M. Cardona, Phys. Rev. B 56, 4115 (1996).CrossRefADSGoogle Scholar
  11. 11.
    Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958).MATHGoogle Scholar
  12. 12.
    E. Hanamura, Phys. Rev. B 37, 1273 (1988).CrossRefADSGoogle Scholar
  13. 13.
    S. Le Goff and B. Stébé, Phys. Rev. B 47, 1383 (1993).CrossRefADSGoogle Scholar
  14. 14.
    J. Song and S. E. Ulloa, Phys. Rev. B 52, 9015 (1995).CrossRefADSGoogle Scholar
  15. 15.
    P. Matagne and J.-P. Leburton, Phys. Rev. B 65, 235 323 (2003).Google Scholar
  16. 16.
    N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. D. Rukhlenko
    • 1
  • A. V. Fedorov
    • 1
  1. 1.All-Russia Research Center Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations