Molecular Biology

, Volume 53, Issue 4, pp 612–623 | Cite as

The Interaction of miRNA-5p and miRNA-3p with the mRNAs of Orthologous Genes

  • O. Yu. Yurikova
  • D. E. Aisina
  • R. E. Niyazova
  • Sh. A. Atambayeva
  • S. Labeit
  • A. T. IvashchenkoEmail author


miRNAs regulate the expression of many genes and are involved in the development of diseases. We studied miRNAs that interact partly or fully complementarily with the 5'UTR, CDS and 3'UTR of mRNAs of target genes. The MirTarget program used in this study allows for the discovery of miRNA binding sites (BS) in the entire nucleotide sequence of the mRNA and for determining the characteristics of the interactions of miRNAs with mRNAs. We identified five pairs of fully complementary BS for miR-127-5p and miR-127-3p, miR-136-5p and miR-136-3p, miR-431-5p and miR-431-3p, miR-432-5p and miR-432-3p, and miR-433-5p and miR-433-3p in the CDS of the human and animal mRNA of RTL1 gene. The fully complementary BS for miR-6720-5p, miR-6720-3p were identified in the CDS of the FOXF2 gene; BS for miR-3187-5p, miR-3187-3p were found in the CDS of the PLPPR3 gene; BS for miR-4665-5p, miR-4665-3p were found in the 5′UTR of the KIAA2026 gene; BS for miR-135a-5p, miR-135a-3p were found in the 3′UTR of the GLYCTK gene; BS for miR-7106-5p, miR-7106-3p were found in the 3′UTR of the CCDC42B gene. The miRNA-5p and miRNA-3p associated with the RTL1 gene have BS in the mRNAs of 32 target human genes. The miRNA-5p and miRNA-3p associated with the FOXF2, PLPPR3, KIAA2026, GLYCTK and CCDC42B genes have BS in the mRNAs of 27 target genes, involved in development of several diseases. Nucleotide sequences of miRNA-5p and miRNA-3p and BS are conserved over tens of millions of years of divergence of the studied animal species. Binding characteristics of miR-3120-3p and miR-3120-5p, miR-196b-3p and miR-196b-5p, miR-125a-3p and miR-125a-3p, let-7e-3p and let-7e-5p, miR-99b-3p in fully complementary BS of non-coding DMN3OS, HOXA10-AS, SPACA6P-AS genes have been established.


miRNA mRNA binding site nucleotides interaction bioinformatics orthologous gene 



We are grateful to the students A. Akimniyazova and D. Bayzhigitova for their help in the collection of data.


This study was supported by a grant no. AP05132460 from the Ministry of Education and Science, Kazakhstan Republic, SRI of Biology and Biotechnology Problems, al-Farabi Kazakh National University.


Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.


Ivashchenko Anatoly and Siegfried Labeit conceived of the study, drafted the manuscript and gave final approval of the version to be published.

Raigul Niyazova and Shara Atambayeva conceived of the study and drafted the manuscript.

Oxana Yurikova obtained the data according to the RTL1 gene for analysis, editing of the manuscript.

Dana Aisina obtained the data according to the FOXF2, PLPPR3, KIAA2026, GLYCTK and CCDC42B genes for analysis, editing of the manuscript.

A. Ivashchenko, R. Niyazova, S. Atambayeva, O. Yurikova, D. Aisina made substantial contributions to acquisition of data, to interpretation and modification of the data.

All authors were involved in subsequent rounds of revisions, and read and approved the final manuscript.

Supplementary material

11008_2019_8099_MOESM1_ESM.pdf (20 kb)
11008_2019_8099_MOESM2_ESM.pdf (58 kb)
11008_2019_8099_MOESM3_ESM.pdf (22 kb)
11008_2019_8099_MOESM4_ESM.pdf (375 kb)
11008_2019_8099_MOESM5_ESM.pdf (394 kb)
11008_2019_8099_MOESM6_ESM.pdf (319 kb)


  1. 1.
    Bartel D.P. 2018. Metazoan microRNAs. Cell. 173, 20–51.CrossRefGoogle Scholar
  2. 2.
    Lytle J.R., Yario T.A., Steitz J.A. 2007. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. U. S. A. 104, 9667–9672.CrossRefGoogle Scholar
  3. 3.
    Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 455, 1124–1128.CrossRefGoogle Scholar
  4. 4.
    Zhou X., Duan X., Qian J., Li F. 2009. Abundant conserved microRNA target sites in the 5’-untranslated region and coding sequence. Genetica. 137, 159–164.CrossRefGoogle Scholar
  5. 5.
    Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. 2014. MiR-3960 binding sites with mRNA of human genes. Bioinformation. 10, 423–427.CrossRefGoogle Scholar
  6. 6.
    Kumamoto S., Takahashi N., Nomura K., Fujiwara M., Kijioka M., Uno Y., Matsuda Y., Sotomaru Y., Kono T. 2017. Overexpression of microRNAs from the Gtl2-Rian locus contributes to postnatal death in mice. Hum. Mol. Genet. 26, 3653–3662.CrossRefGoogle Scholar
  7. 7.
    Ito M., Sferruzzi-Perri A.N., Edwards C.A., Adalsteinsson B.T., Allen S.E., Loo T.H., Kitazawa M., Kaneko-Ishino T., Ishino F., Stewart C.L., Ferguson-Smith A.C. 2015. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development. 142, 2425–2430.CrossRefGoogle Scholar
  8. 8.
    Sekita Y., Wagatsuma H., Nakamura K., Ono R., Kagami M., Wakisaka N., Hino T., Suzuki-Migishima R., Kohda T., Ogura A., Ogata T., Yokoyama M., Kaneko-Ishino T., Ishino F. 2008. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40, 243–248.CrossRefGoogle Scholar
  9. 9.
    Atambayeva Sh., Niyazova R., Ivashchenko A., Pyrkova A., Pinsky I., Akimniyazova A., Labeit S. 2017. The binding sites of miR-619-5p in the mRNAs of human and orthologous genes. BMC Genomics. 18, 428.CrossRefGoogle Scholar
  10. 10.
    Zeng Y., Yi R., Cullen B.R. 2003. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. U. S. A. 100, 9779–9784.CrossRefGoogle Scholar
  11. 11.
    Davis E., Caiment F., Tordoir X., Cavaillé J., Ferguson-Smith A., Cockett N., Georges M., Charlier C. 2005. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743–749.CrossRefGoogle Scholar
  12. 12.
    Belot M.P., Nadéri K., Mille C., Boëlle P.Y., Benachi A., Bougnères P., Fradin D. 2017. Role of DNA methylation at the placental RTL1 gene locus in type 1 diabetes. Pediatr. Diabetes. 18, 178–187.CrossRefGoogle Scholar
  13. 13.
    National Center for Biotechnology Information. Scholar
  14. 14.
    Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. 2016. Prediction of miRNA binding sites in mRNA. Bioinformation. 12, 237–240.CrossRefGoogle Scholar
  15. 15.
    Kool E.T. 2001. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22.CrossRefGoogle Scholar
  16. 16.
    Leontis N.B., Stombaugh J., Westhof E. 2002. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531.CrossRefGoogle Scholar
  17. 17.
    Wang J., Li Z., Liu B., Chen G., Shao N., Ying X., Wang Y. 2016. Systematic study of cis-antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells. RNA. 22, 87–95.CrossRefGoogle Scholar
  18. 18.
    Li S.C., Chan W.C., Hu L.Y., Lai C.H., Hsu C.N., Lin W.C. 2010. Identification of homologous microRNAs in 56 animal genomes. Genomics. 96, 1–9.CrossRefGoogle Scholar
  19. 19.
    Shi N., Deng L., Chen W., Zhang X., Luo R., Jin T., Ma Y., Du C., Lin Z., Jiang K., Guo J., Yang X., Xia Q. 2017. Is microRNA-127 a novel biomarker for acute pancreatitis with lung injury? Dis. Markers. 2017, 1204295.CrossRefGoogle Scholar
  20. 20.
    Shi L., Wang Y., Lu Z., Zhang H., Zhuang N., Wang B., Song Z., Chen G., Huang C., Xu D., Zhang Y., Zhang W., Gao Y. 2017. MiR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop. Oncogene. 36, 1631–1643.CrossRefGoogle Scholar
  21. 21.
    Ying H., Kang Y., Zhang H., Zhao D., Xia J., Lu Z., Wang H., Xu F., Shi L. 2015. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol. 194, 1239–1251.CrossRefGoogle Scholar
  22. 22.
    Huang C., Xiao X., Chintagari N.R., Breshears M., Wang Y., Liu L. 2014. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med. Genomics. 7, 46.CrossRefGoogle Scholar
  23. 23.
    Ito M., Sferruzzi-Perri A.N., Edwards C.A., Adalsteinsson B.T., Allen S.E., Loo T.H., Kitazawa M., Kaneko-Ishino T., Ishino F., Stewart C.L., Ferguson-Smith A.C. 2015. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development. 142, 2425–2430.CrossRefGoogle Scholar
  24. 24.
    Bhaskaran M., Wang Y., Zhang H., Weng T., Baviskar P., Guo Y., Gou D., Liu L. 2009. MicroRNA-127 modulates fetal lung development. Physiol. Genomics. 37, 268–278.CrossRefGoogle Scholar
  25. 25.
    Xie T., Liang J., Liu N., Wang Q., Li Y., Noble P.W., Jiang D. 2012. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. J. Immunol. 188, 2437–2444.CrossRefGoogle Scholar
  26. 26.
    Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. 2014. The properties of binding sites of miR-619-5p, miR-5095, miR-5096, and miR-5585-3p in the mRNAs of human genes. BioMed. Res. Int. 2014, 1–8.Google Scholar
  27. 27.
    Girardot M., Cavaillé J., Feil R. 2012. Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics. 7, 1341–1348.CrossRefGoogle Scholar
  28. 28.
    Fan G., Ye D., Zhu S., et al. 2017. RTL1 promotes melanoma proliferation by regulating Wnt/β-catenin signalling. Oncotarget. 8, 106026–106037.Google Scholar
  29. 29.
    Bari A., Orazova S., Ivashchenko A. 2013. miR156- and miR171-binding sites in the protein-coding sequences of several plant genes. Biomed. Res. Int. 2013, 307145.CrossRefGoogle Scholar
  30. 30.
    Lo P.K. 2017. The controversial role of forkhead box F2 (FOXF2) transcription factor in breast cancer. PRAS Open. 1, 9.Google Scholar
  31. 31.
    Lo P.K., Lee J.S., Liang X., Sukumar S. 2016. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression. Cell Signal. 28, 1502–1519.CrossRefGoogle Scholar
  32. 32.
    Wang Q.S., Kong P.Z., Li X.Q., Yang F., Feng Y.M. 2015. FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer. Breast Cancer Res. 17, 30.CrossRefGoogle Scholar
  33. 33.
    Kong P.Z., Yang F., Li L., Li X.Q., Feng Y.M. 2013. Decreased FOXF2 mRNA expression indicates early-onset metastasis and poor prognosis for breast cancer patients with histological grade II tumor. PLoS One. 8, e61591.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • O. Yu. Yurikova
    • 1
  • D. E. Aisina
    • 1
  • R. E. Niyazova
    • 1
  • Sh. A. Atambayeva
    • 1
  • S. Labeit
    • 2
  • A. T. Ivashchenko
    • 1
    Email author
  1. 1.Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute for Anaesthesiology and Intensive Operative Care Medical Faculty MannheimMannheimGermany

Personalised recommendations