Molecular Biology

, Volume 53, Issue 4, pp 535–546 | Cite as

Evolution and Comparative Genomics of the pSM22 Plasmid of the IncF/MOBF12 Group

  • T. R. IasakovEmail author
  • L. G. Anisimova
  • N. V. Zharikova
  • E. I. Zhurenko
  • V. V. Korobov
  • T. V. Markusheva


A new plasmid, pSM22, was isolated from Serratia marcescens and sequenced. Its 43 190-bp sequence with an average GC-content of 58% contains 31 open reading frames (ORFs) which form replication, conjugation, stability, and adaptive modules. The replication module includes a site of initiation of leading-strand synthesis in plasmid replication, a replication termination site (terC), the repA (=repA1) and repA4 genes, and the copA sequence, which codes for an antisense RNA (asRNA). These structures are functionally integrated in an FII replicon (incompatibility group IncFII). Based on the significant differences between the FII replicon and the canonical sequences of the R plasmids R1 and NR1 (=R100=R222), pSM22 was assigned to a new subtype. The conjugation module includes 13 genes with a high identity to the genes responsible for conjugation of the F plasmid. A comparative genomic analysis showed that the conjugation modules of pSM22 and F are structurally similar. By the conjugation system and the presence of three conserved motifs in relaxase (TraI), pSM22 belongs to the F12 clade of the MOBF type. The stability module includes the resD and parA genes, which are responsible for the resolution of multimeric plasmid forms and their subsequent segregation between daughter cells. The adaptive module contains the microcin H47 (MccH47) secretion/processing and UV resistance genes. The mosaic structure of pSM22 and reductive evolution of its modules suggest high genomic plasticity for the genus Serratia. An analysis of the architecture of the pSM22 modules clarifies the evolutionary relationships among IncF/MOBF12 group plasmids in bacteria of the family Enterobacteriaceae and opens a novel avenue for further comparative genomic studies of Serratia plasmids.


plasmid pSM22 IncF/MOBF12 ori repA evolution comparative genomics Serratia marcescens replicon relaxase 



We are grateful to B.B. Kuznetsov, B.K. Bumazhkin, T.V. Kolganova, and E.O. Patutina (Institute of Bioengineering, Russian Academy of Sciences, Moscow) for help in experiments.

The study was carried out using the infrastructure and equipment of the Core Facilities “Bioengineering” (Moscow) and “Agidel” (Ufa).


This work was supported by a Government Contract, state registration no. AAAA-A18-118022190098-9.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans performed by any of the authors.


  1. 1.
    Norman A., Hansen L.H., Sørensen S.J. 2009. Conjugative plasmids: Vessels of the communal gene pool. Philos. Trans. R. Soc. Lond. B. 364, 2275–2289.Google Scholar
  2. 2.
    Petrova M., Kurakov A., Shcherbatova N., Mindlin S. 2014. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology. 160, 2253–2263.Google Scholar
  3. 3.
    Zhai Y., He Z., Kang Y., Yu H., Wang J., Du P., Zhang Z., Hu S., Gao Z. 2016. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid. 86, 26–31.Google Scholar
  4. 4.
    Filonov A.E., Akhmetov L.I., Puntus I.F., Esikova T.Z., Gafarov A.B., Kosheleva I.A., Boronin A.M. 2010. Horizontal transfer of catabolic plasmids and naphthalene biodegradation in open soil. Microbiology. 79 (2), 184–190.Google Scholar
  5. 5.
    Panov A.V., Volkova O.V., Puntus I.F., Esikova T.Z., Kosheleva I.A., Boronin A.M. 2013. scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids. Mol. Biol. (Moscow). 47 (1), 105–111.Google Scholar
  6. 6.
    Orlek A., Phan H., Sheppard A.E., Doumith M., Ellington M., Peto T., Crook D., Walker A.S., Woodford N., Anjum M.F., Stoesser N. 2017. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid. 91, 42–52.Google Scholar
  7. 7.
    Rozhon W., Petutschnig E., Khan M., Summers D.K., Poppenberger B. 2010. Frequency and diversity of small cryptic plasmids in the genus Rahnella. BMC Microbiol. 10, 56.Google Scholar
  8. 8.
    Fernandez-Lopez R., de Toro M., Moncalian G., Garcillan-Barcia M.P., de la Cruz F. 2016. Comparative genomics of the conjugation region of F-like plasmids: Five shades of F. Front. Mol. Biosci. 3, 71.Google Scholar
  9. 9.
    Ying J., Wu S., Zhang K., Wang Z., Zhu W., Zhu M., Zhang Y., Cheng C., Wang H., Tou H., Zhu C., Li P., Ying J., Xu T., Yi H., et al. 2015. Comparative genomics analysis of pKF3-94 in Klebsiella pneumoniae reveals plasmid compatibility and horizontal gene transfer. Front. Microbiol. 6, 831.Google Scholar
  10. 10.
    Kubasova T, Cejkova D, Matiasovicova J, Sekelova Z., Polansky O., Medvecky M., Rychlik I., Juricova H. 2016. Antibiotic resistance, core-genome and protein expression in IncHI1 plasmids in Salmonella typhimurium. Genome Biol. Evol. 8, 1661–1671.Google Scholar
  11. 11.
    Cain A.K., Hall R.M. 2013. Evolution of IncHI1 plasmids: Two distinct lineages. Plasmid. 70, 201–208.Google Scholar
  12. 12.
    Johnson T.J., Shepard S.M., Rivet B., Danzeisen J.L., Carattoli A. 2011. Comparative genomics and phylogeny of the IncI1 plasmids: A common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid. 66, 144–151.Google Scholar
  13. 13.
    Mahlen S.D. 2011. Serratia infections: From military experiments to current practice. Clin. Microbiol. Rev. 24, 755–791.Google Scholar
  14. 14.
    Chen S., Blom J., Walker E.D. 2017. Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front. Microbiol. 8, 1483.Google Scholar
  15. 15.
    Garipova S.R., Garifullina D.V., Baimiev A.Kh., Khairullin R.M. 2017. Intermicrobial relationships of the pea nodule symbiont Serratia sp. Ent16 and its colonization of the host endorhizosphere. Appl. Biochem. Microbiol. 53 (3), 338–345.Google Scholar
  16. 16.
    Iguchi A., Nagaya Y., Pradel E., Ooka T., Ogura Y., Katsura K., Kurokawa K., Oshima K., Hattori M., Parkhill J., Sebaihia M., Coulthurst S.J., Gotoh N., Thomson N. R., Ewbank J.J., Hayashi T. 2014. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome Biol. Evol. 6, 2096–2110.Google Scholar
  17. 17.
    Zhao W.H., Hu Z.Q., Chen G., Matsushita K., Fukuchi K., Shimamura T. 2007. Characterization of imipenem-resistant Serratia marcescens producing IMP-type and TEM-type β-lactamases encoded on a single plasmid. Microbiol. Res. 162, 46–52.Google Scholar
  18. 18.
    da Costa Guimarães A.C., Almeida A.C., Nicoletti A.G., Vilela M.A., Gales A.C., de Morais M.M. 2013. Clonal spread of carbapenem-resistant Serratia marcescens isolates sharing an IncK plasmid containing bla KPC-2. Int. J. Antimicrob. Agents. 42, 369–370.Google Scholar
  19. 19.
    Kehinde F.O., Isaac S.A. 2017. Chromosomal and plasmid mediated degradation of crude oil by Bacillus coagulans, Citrobacter koseri and Serratia ficaria isolated from the soil. Afr. J. Biotechnol. 16, 1242–1253.Google Scholar
  20. 20.
    Birnboim H.C., Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523.Google Scholar
  21. 21.
    Ogden R.C., Adams D.A. 1987. Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 152, 61–87.Google Scholar
  22. 22.
    Sanger F., Nicklen S., Coulson A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 84, 5463–5467.Google Scholar
  23. 23.
    Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 41, 95–98.Google Scholar
  24. 24.
    Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.Google Scholar
  25. 25.
    Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  26. 26.
    Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39, 783–791.Google Scholar
  27. 27.
    Zuckerkandl E., Pauling L. 1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Eds. Bryson V., Vogel H.J. New York: Academic, pp. 97–166.Google Scholar
  28. 28.
    Nordström M., Nordström K. 1985. Control of replication of FII plasmids: Comparison of the basic replicons and of the copB systems of plasmids Rl00 and Rl. Plasmid. 13, 81–87.Google Scholar
  29. 29.
    Womble D.D., Rownd R.H. 1988. Genetic and physical map of plasmid NR1: Comparison with other IncFII antibiotic resistance plasmids. Microbiol. Rev. 52, 433–451.Google Scholar
  30. 30.
    Jiang T., Min Y.-N., Liu W., Womble D.D., Rownd R.H. 1993. Insertion and deletion mutations in the repA4 region of the IncFII plasmid NR1 cause unstable inheritance. J. Bacteriol. 175, 5350–5358.Google Scholar
  31. 31.
    Bernander R., Krabbe M., Nordström K. 1992. Mapping of the in vivo start site for leading strand DNA synthesis in plasmid R1. EMBO J. 11, 4481–4487.Google Scholar
  32. 32.
    Schröder G., Lanka E. 2005. The mating pair formation system of conjugative plasmids: A versatile secretion machinery for transfer of proteins and DNA. Plasmid. 54, 1–25.Google Scholar
  33. 33.
    Garcillán-Barcia M.P., Francia M.V., de la Cruz F. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol. Rev. 33, 657–687.Google Scholar
  34. 34.
    Lane D., de Feyter R., Kennedy M., Phua S.H., Semon D. 1986. D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 14, 9713–9728.Google Scholar
  35. 35.
    Thumm G., Olschläger T., Braun V. 1988. Plasmid pColBM-Cl139 does not encode a colicin lysis protein but contains sequences highly homologous to the D protein (resolvase) and the oriV region of the miniF plasmid. Plasmid. 20, 75–82.Google Scholar
  36. 36.
    Hwang L.C., Vecchiarelli A.G., Han Y.W., Mizuuchi M., Harada Y., Funnell B.E., Mizuuchi K. 2013. ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J. 32, 1238–1249.Google Scholar
  37. 37.
    Gaggero C., Moreno F., Laviña M. 1993. Genetic analysis of microcin H47 antibiotic system. J. Bacteriol. 175, 5420–5427.Google Scholar
  38. 38.
    Garcillán-Barcia M.P., Alvarado A., de la Cruz F. 2011. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol. Rev. 35, 936–956.Google Scholar
  39. 39.
    Fernández-López, R., Pilar Garcillán-Barcia, M., Revilla, C., Lázaro, M., Vielva, L.,de La Cruz, F. 2006. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30, 942–966.Google Scholar
  40. 40.
    del Solar G., Giraldo R., Ruiz-Echevarría M.J., Espinosa M., Díaz-Orejas R. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464.Google Scholar
  41. 41.
    Villa L., García-Fernández A., Fortini D., Carattoli A. 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 65, 2518–2529.Google Scholar
  42. 42.
    Surtees J.A., Funnell B.E. 2003. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr. Top. Dev. Biol. 56, 145–9180.Google Scholar
  43. 43.
    Crozat E., Fournes F., Cornet F., Hallet B., Rousseau P. 2014. Resolution of multimeric forms of circular plasmids and chromosomes. Microbiol. Spectr. 2, PLAS-0025-2014.Google Scholar
  44. 44.
    Little J.W. 1982. Control of the SOS regulatory system by the level of RecA protease. Biochimie. 64, 585–589.Google Scholar
  45. 45.
    Bell J.C., Kowalczykowski S.C. 2016. RecA: Regulation and mechanism of a molecular search engine. Trends. Biochem. Sci. 41, 491–507.Google Scholar
  46. 46.
    Díaz-Magaña A., Alva-Murillo N., Chávez-Moctezuma M.P., López-Meza J.E., Ramírez-Díaz M.I., Cervantes C. 2015. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes. Microbiology. 161, 1516–1523.Google Scholar
  47. 47.
    Ushakov V.Yu. 2010. The SOS system of DNA repair in bacteria: A review. Vestn. Perm. Gos. Univ., Ser. Biol. 2, 19–30.Google Scholar
  48. 48.
    Tiganova I.G., Rusina O.Yu., Andreeva I.V. 2006. SOS induction in the presence of pKM101 plasmid in Escherichia coli K12 cells. Mol. Genet. Mikrobiol. Virusol. 1, 11–14.Google Scholar
  49. 49.
    Verbenko V.N., Kuznetsova L.V., Krupyan E.P., Suslov A.V. 2009. Expression of recA gene of Deinococcus radiodurans in Escherichia coli cells. Russ. J. Genet. 45 (10), 1192–1199.Google Scholar
  50. 50.
    Kokjohn T.A., Miller R.V. 1994. IncN plasmids mediate UV resistance and error-prone repair in Pseudomonas aeruginosa PAO. Microbiology. 140, 43–48.Google Scholar
  51. 51.
    Korobov V.V., Markusheva T.V., Kusova I.V., Zhurenko E.Yu., Galkin E.G., Zharikova N.V., Gafiyatova L.R. 2006. Serratia marcescens B-6493 strain: A degrader of phenol and dichlorophenol. Biotekhnologiya. 2, 63–65.Google Scholar
  52. 52.
    Volkova O.V., Panov O.V., Kosheleva I.A., Boronin A.M. 2013. Classification of IncP-7 plasmids based on structural diversity of their basic replicons. Mol. Biol. (Moscow). 47 (2), 205–214.Google Scholar
  53. 53.
    Volkova O.V., Kosheleva I.A., Boronin A.M. 2013. Organization and maintenance features of IncP-7 naphthalene degradation plasmid pFME5 basic replicon. Russ. J. Genet. 49 (5), 477–486.Google Scholar
  54. 54.
    Sechenikov A.A., Kovalchuk K.V., Vasilenko S.L., Titok M.A. 2013. Selection of initiation replication system mutants of IncP-9 plasmid pBS267. Russ. J. Genet. 49 (2), 164–169.Google Scholar
  55. 55.
    Pinney R.J. 1980. Distribution among incompatibility groups of plasmids that confer UV mutability and UV resistance. Mutat. Res. 72, 155–15s9.Google Scholar
  56. 56.
    Zharikova N., Iasakov T., Bumazhkin B., Patutina E., Zhurenko E., Korobov V., Sagitova A., Kuznetsov B., Markusheva T. 2018. Isolation and sequence analysis of pCS36-4CPA, a small plasmid from Citrobacter sp. 36-4CPA. Saudi J. Biol. Sci. 25, 660–671.Google Scholar
  57. 57.
    Azpiroz M.F., Rodríguez E., Laviña M. 2001. The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob. Agents Chemother. 45, 969–972.Google Scholar
  58. 58.
    Cox K.E.L., Schildbach J.F. 2017. Sequence of the R1 plasmid and comparison to F and R100. Plasmid. 91, 53–60.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • T. R. Iasakov
    • 1
    Email author
  • L. G. Anisimova
    • 1
  • N. V. Zharikova
    • 1
  • E. I. Zhurenko
    • 1
  • V. V. Korobov
    • 1
  • T. V. Markusheva
    • 1
  1. 1.Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia

Personalised recommendations