Advertisement

Molecular Biology

, Volume 53, Issue 4, pp 547–559 | Cite as

Novel Genes Associated with the Development of Carotid Paragangliomas

  • A. V. SnezhkinaEmail author
  • E. N. Lukyanova
  • M. S. Fedorova
  • D. V. Kalinin
  • N. V. Melnikova
  • O. A. Stepanov
  • M. V. Kiseleva
  • A. D. Kaprin
  • E. A. Pudova
  • A. V. Kudryavtseva
GENOMICS. TRANSCRIPTOMICS

Abstract

Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors of the head and neck. “Germline” and somatic mutations in a number of genes were shown to be associated with the development of CPGLs; however, molecular mechanisms of the tumor pathogenesis have not been fully understood. In the work, we have used whole exome sequencing data of 52 CPGLs obtained earlier. Using MutSigCV, the search for genes with high mutation rate was performed. Thirty four genes (MADCAM1, SARM1, ZFPM1, CTDSP2, DSPP, POTED, ANP32B, FRG2B, BAGE3, CCDC89, ACOT2, KRTAP10-1, ATXN1, GXYLT1, MUC2, AQP7, TMPRSS13, KRTAP4-3, PRR21, PSPH, PLBD1, ZNF595, IGSF3, PRR16, FAM157A, KCNJ12, HYDIN, IGFBP2, KIAA1671, DISC1, MUC6, XKR3, HRNR, and MUC4) potentially associated with the CPGL initiation and progression were revealed. The involvement of these genes in the pathogenesis of CPGLs was first shown, and possible mechanisms of their participation in that were discussed.

Keywords:

carotid paragangliomas tumor-associated genes exome high-throughput sequencing 

Notes

ACKNOWLEDGMENTS

The authors are grateful for the support provided by the Vishnevsky Institute of Surgery by participating in the collection of CPGLs and the Medical Research Radiological Center by providing some of the computing power.

FUNDING

The study was funded by a grant from the Russian Science Foundation (project no. 17-75-20105).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR CONTRIBUTIONS

These authors contributed equally to this work.

REFERENCES

  1. 1.
    El-Naggar A.K., Chan J.K.C., Grandis J.R., Takata T., Slootweg P.J. 2017. Classification of Head and Neck Tumours, 4th ed. World Health Organization, vol. 9, 348.Google Scholar
  2. 2.
    Davidovic L.B., Djukic V.B., Vasic D.M., Sindjelic R.P., Duvnjak S.N. 2005. Diagnosis and treatment of carotid body paraganglioma: 21 years of experience at a clinical center of Serbia. World J. Surg. Oncol. 3, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hua Q., Xu Z., Jiang Y. 2017. Diagnosis and surgical treatment of carotid body tumor: A retrospective analysis of 58 patients. Oncol. Lett. 14, 3628‒3632.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stratton M.R., Campbell P.J., Futreal P.A. 2009. The cancer genome. Natusre. 458, 719‒724.CrossRefGoogle Scholar
  5. 5.
    Nolting S., Grossman A.B. 2012. Signaling pathways in pheochromocytomas and paragangliomas: Prospects for future therapies. Endocr. Pathol. 23, 21‒33.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhikrivetskaya S.O., Snezhkina A.V., Zaretsky A.R., Alekseev B.Y., Pokrovsky A.V., Golovyuk A.L., Melnikova N.V., Stepanov O.A., Kalinin D.V., Moskalev A.A., Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V. 2017. Molecular markers of paragangliomas/pheochromocytomas. Oncotarget. 8, 25756–25782.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Astuti D., Hart-Holden N., Latif F., Lalloo F., Black G.C., Lim C., Moran A., Grossman A.B., Hodgson S.V., Freemont A., Ramsden R., Eng C., Evans D.G., Maher E.R. 2003. Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin. Endocrinol. (Oxford). 59, 728‒733.CrossRefGoogle Scholar
  8. 8.
    Baysal B.E., Ferrell R.E., Willett-Brozick J.E., Lawrence E.C., Myssiorek D., Bosch A., van der Mey A., Taschner P.E., Rubinstein W.S., Myers E.N., Richard C.W., 3rd, Cornelisse C.J., Devilee P., Devlin B. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 287, 848‒851.CrossRefPubMedGoogle Scholar
  9. 9.
    Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7, 77‒85.CrossRefPubMedGoogle Scholar
  10. 10.
    Eisenhofer G., Huynh T.T., Pacak K., Brouwers F.M., Walther M.M., Linehan W.M., Munson P.J., Mannelli M., Goldstein D.S., Elkahloun A.G. 2004. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: Activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr. Relat. Cancer. 11, 897‒911.CrossRefPubMedGoogle Scholar
  11. 11.
    Welander J., Andreasson A., Juhlin C.C., Wiseman R.W., Backdahl M., Hoog A., Larsson C., Gimm O., Soderkvist P. 2014. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 99, E1352‒E1360.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jafri M., Whitworth J., Rattenberry E., Vialard L., Kilby G., Kumar A.V., Izatt L., Lalloo F., Brennan P., Cook J., Morrison P.J., Canham N., Armstrong R., Brewer C., Tomkins S., et al. 2013. Evaluation of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. Clin. Endocrinol. (Oxford). 78, 898‒906.CrossRefGoogle Scholar
  13. 13.
    Yang C., Zhuang Z., Fliedner S.M., Shankavaram U., Sun M.G., Bullova P., Zhu R., Elkahloun A.G., Kourlas P.J., Merino M., Kebebew E., Pacak K. 2015. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. (Berlin). 93, 93‒104.CrossRefPubMedGoogle Scholar
  14. 14.
    Ladroue C., Carcenac R., Leporrier M., Gad S., Le Hello C., Galateau-Salle F., Feunteun J., Pouyssegur J., Richard S., Gardie B. 2008. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J. Med. 359, 2685‒2692.CrossRefPubMedGoogle Scholar
  15. 15.
    Downward J. 1998. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262‒267.CrossRefPubMedGoogle Scholar
  16. 16.
    Wullschleger S., Loewith R., Hall M.N. 2006. TOR signaling in growth and metabolism. Cell. 124, 471‒484.CrossRefPubMedGoogle Scholar
  17. 17.
    Bian C.X., Shi Z., Meng Q., Jiang Y., Liu L.Z., Jiang B.H. 2010. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem. Biophys. Res. Commun. 398, 395‒399.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Santarpia L., Lippman S.M., El-Naggar A.K. 2012. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert. Opin. Ther. Targets. 16, 103‒119.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klose A., Ahmadian M.R., Schuelke M., Scheffzek K., Hoffmeyer S., Gewies A., Schmitz F., Kaufmann D., Peters H., Wittinghofer A., Nurnberg P. 1998. Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum. Mol. Genet. 7, 1261–1268.CrossRefPubMedGoogle Scholar
  20. 20.
    Johannessen C.M., Reczek E.E., James M.F., Brems H., Legius E., Cichowski K. 2005. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. U. S. A. 102, 8573‒8578.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu J., Blenis J., Yuan J. 2008. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc. Natl. Acad. Sci. U. S. A. 105, 6584‒6589.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deng Y., Qin Y., Srikantan S., Luo A., Cheng Z.M., Flores S.K., Vogel K.S., Wang E., Dahia P.L.M. 2018. The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum. Mol. Genet. 27, 1794‒1808.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Munirajan A.K., Ando K., Mukai A., Takahashi M., Suenaga Y., Ohira M., Koda T., Hirota T., Ozaki T., Nakagawara A. 2008. KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J. Biol. Chem. 283, 24426‒24434.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schlisio S., Kenchappa R.S., Vredeveld L.C., George R.E., Stewart R., Greulich H., Shahriari K., Nguyen N.V., Pigny P., Dahia P.L., Pomeroy S.L., Maris J.M., Look A.T., Meyerson M., Peeper D.S., et al. 2008. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 22, 884‒893.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Offergeld C., Brase C., Yaremchuk S., Mader I., Rischke H.C., Glasker S., Schmid K.W., Wiech T., Preuss S.F., Suarez C., Kopec T., Patocs A., Wohllk N., Malekpour M., Boedeker C.C., Neumann H.P. 2012. Head and neck paragangliomas: Clinical and molecular genetic classification. Clinics (Sao Paulo). 67 (Suppl. 1), 19‒28.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Snezhkina A.V., Lukyanova E.N., Kalinin D.V., Pokrovsky A.V., Dmitriev A.A., Koroban N.V., Pudova E.A., Fedorova M.S., Volchenko N.N., Stepanov O.A., Zhevelyuk E.A., Kharitonov S.L., Lipatova A.V., Abramov I.S., Golovyuk A.V., et al. 2018. Exome analysis of carotid body tumor. BMC Med. Genomics. 11, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kudryavtseva A.V., Nyushko K.M., Zaretsky A.R., Shagin D.A., Sadritdinova A.F., Fedorova M.S., Savvateeva M.V., Guvatova Z.G., Pudova E.A., Alekseev B.Ya., Dmitriev A.A., Snezhkina A.V. 2018. Suppression of NR0B2 gene in clear cell renal cell carcinoma is associated with hypermethylation of its promoter. Mol. Biol. (Moscow). 52 (3), 414‒418.CrossRefGoogle Scholar
  28. 28.
    Snezhkina A.V., Krasnov G.S., Zhikrivetskaya S.O., Karpova I.Yu., Fedorova M.S., Nyushko K.M., Belyakov M.M., Gnuchev N.V., Sidorov D.V., Alekseev B.Ya., Melnikova N.V., Kudryavtseva A.V. 2018. Overexpression of microRNAs miR-9, -98, and -199 correlates with the downregulation of HK2 expression in colorectal cancer. Mol. Biol. (Moscow). 52 (2), 190–199.CrossRefGoogle Scholar
  29. 29.
    Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., Carter S.L., Stewart C., Mermel C.H., Roberts S.A., Kiezun A., Hammerman P.S., McKenna A., Drier Y., Zou L., et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499, 214‒218.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cancer Genome Atlas Research N. 2012. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 489, 519‒525.Google Scholar
  31. 31.
    Pleasance E.D., Cheetham R.K., Stephens P.J., McBride D.J., Humphray S.J., Greenman C.D., Varela I., Lin M.L., Ordonez G.R., Bignell G.R., Ye K., Alipaz J., Bauer M.J., Beare D., Butler A., et al. 2010. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 463, 191‒196.CrossRefPubMedGoogle Scholar
  32. 32.
    Stamatoyannopoulos J.A., Adzhubei I., Thurman R.E., Kryukov G.V., Mirkin S.M., Sunyaev S.R. 2009. Human mutation rate associated with DNA replication timing. Nat. Genet. 41, 393‒395.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen C.L., Rappailles A., Duquenne L., Huvet M., Guilbaud G., Farinelli L., Audit B., d’Aubenton-Carafa Y., Arneodo A., Hyrien O., Thermes C. 2010. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447‒457.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114‒2120.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li H., Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 26, 589‒595.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078‒2079.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 27, 2987‒2993.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Garrison E., Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv. 1207.3907 [q-bio.GN].Google Scholar
  39. 39.
    Cingolani P., Platts A., Wang le L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6, 80‒92.Google Scholar
  40. 40.
    Vaser R., Adusumalli S., Leng S.N., Sikic M., Ng P.C. 2016. SIFT missense predictions for genomes. Nat. Protoc. 11, 1‒9.CrossRefPubMedGoogle Scholar
  41. 41.
    Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. 2010. A method and server for predicting damaging missense mutations. Nat. Methods. 7, 248‒249.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. 2014. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods. 11, 36136‒36142.Google Scholar
  43. 43.
    Chun S., Fay J.C. 2009. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553‒1561.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S., Weinstock G.M., Wilson R.K., Gibbs R.A., Kent W.J., Miller W., Haussler D. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pollard K.S., Hubisz M.J., Rosenbloom K.R., Siepel A. 2010. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110‒121.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yu G., Wang L.G., Han Y., He Q.Y. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16, 284‒287.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dogan A., Du M., Koulis A., Briskin M.J., Isaacson P.G. 1997. Expression of lymphocyte homing receptors and vascular addressins in low-grade gastric B-cell lymphomas of mucosa-associated lymphoid tissue. Am. J. Pathol. 151, 1361‒1369.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu Y.X., Yoshino T., Ohara N., Oka T., Jin Z.S., Hayashi K., Akagi T. 2001. Loss of expression of alpha4beta7 integrin and L-selectin is associated with high-grade progression of low-grade MALT lymphoma. Mod. Pathol. 14, 798‒805.CrossRefPubMedGoogle Scholar
  49. 49.
    Morale M.G., da Silva Abjaude W., Silva A.M., Villa L.L., Boccardo E. 2018. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci. Rep. 8, 3476.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tinti M., Dissanayake K., Synowsky S., Albergante L., MacKintosh C. 2014. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers. Open Biol. 4, 140029.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Marcucci G., Maharry K., Radmacher M.D., Mrozek K., Vukosavljevic T., Paschka P., Whitman S.P., Langer C., Baldus C.D., Liu C.G., Ruppert A.S., Powell B.L., Carroll A.J., Caligiuri M.A., Kolitz J.E., et al. 2008. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: A Cancer and Leukemia Group B Study. J. Clin. Oncol. 26, 5078‒5087.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Su Y.A., Lee M.M., Hutter C.M., Meltzer P.S. 1997. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene. 15, 1289‒1294.CrossRefPubMedGoogle Scholar
  53. 53.
    Su Y.A., Trent J.M., Guan X.Y., Meltzer P.S. 1994. Direct isolation of genes encoded within a homogeneously staining region by chromosome microdissection. Proc. Natl. Acad. Sci. U. S. A. 91, 9121‒9125.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhuang C., Wang P., Huang D., Xu L., Wang X., Wang L., Hu L. 2016. A double-negative feedback loop between EZH2 and miR-26a regulates tumor cell growth in hepatocellular carcinoma. Int. J. Oncol. 48, 1195‒1204.CrossRefPubMedGoogle Scholar
  55. 55.
    Fischer U., Keller A., Leidinger P., Deutscher S., Heisel S., Urbschat S., Lenhof H.P., Meese E. 2008. A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13-21 in glioma. Mol. Cancer Res. 6, 576‒584.CrossRefPubMedGoogle Scholar
  56. 56.
    Chaplet M., Waltregny D., Detry C., Fisher L.W., Castronovo V., Bellahcene A. 2006. Expression of dentin sialophosphoprotein in human prostate cancer and its correlation with tumor aggressiveness. Int. J. Cancer. 118, 850‒856.CrossRefPubMedGoogle Scholar
  57. 57.
    Ogbureke K.U., Abdelsayed R.A., Kushner H., Li L., Fisher L.W. 2010. Two members of the SIBLING family of proteins, DSPP and BSP, may predict the transition of oral epithelial dysplasia to oral squamous cell carcinoma. Cancer. 116, 1709‒1717.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bera T.K., Zimonjic D.B., Popescu N.C., Sathyanarayana B.K., Kumar V., Lee B., Pastan I. 2002. POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 99, 16975‒16980.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bera T.K., Walker D.A., Sherins R.J., Pastan I. 2012. POTE protein, a cancer-testis antigen, is highly expressed in spermatids in human testis and is associated with apoptotic cells. Biochem. Biophys. Res. Commun. 417, 1271‒1274.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yang S., Zhou L., Reilly P.T., Shen S.M., He P., Zhu X.N., Li C.X., Wang L.S., Mak T.W., Chen G.Q., Yu Y. 2016. ANP32B deficiency impairs proliferation and suppresses tumor progression by regulating AKT phosphorylation. Cell Death Dis. 7, e2082.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Boel P., Wildmann C., Sensi M.L., Brasseur R., Renauld J.C., Coulie P., Boon T., van der Bruggen P. 1995. BAGE: A new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 2, 167‒175.CrossRefPubMedGoogle Scholar
  62. 62.
    Ruault M., van der Bruggen P., Brun M.E., Boyle S., Roizes G., De Sario A. 2002. New BAGE (B melanoma antigen. genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. Eur. J. Hum. Genet. 10, 833‒840.CrossRefPubMedGoogle Scholar
  63. 63.
    Kang A.R., An H.T., Ko J., Choi E.J., Kang S. 2017. Ataxin-1 is involved in tumorigenesis of cervical cancer cells via the EGFR-RAS-MAPK signaling pathway. Oncotarget. 8, 94606‒94618.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Asghari M., Abazari M.F., Bokharaei H., Aleagha M.N., Poortahmasebi V., Askari H., Torabinejad S., Ardalan A., Negaresh N., Ataei A., Pazooki P., Poorebrahim M. 2018. Key genes and regulatory networks involved in the initiation, progression and invasion of colorectal cancer. Future Sci. OA. 4, FSO278.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kang A.R., An H.T., Ko J., Kang S. 2017. Ataxin-1 regulates epithelial–mesenchymal transition of cervical cancer cells. Oncotarget. 8, 18248‒18259.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ogata S., Uehara H., Chen A., Itzkowitz S.H. 1992. Mucin gene expression in colonic tissues and cell lines. Cancer Res. 52, 5971‒5978.PubMedGoogle Scholar
  67. 67.
    Yonezawa S., Nakamura A., Horinouchi M., Sato E. 2002. The expression of several types of mucin is related to the biological behavior of pancreatic neoplasms. J. Hepatobiliary Pancreat. Surg. 9, 328‒341.CrossRefPubMedGoogle Scholar
  68. 68.
    Wen R., Gao F., Zhou C.J., Jia Y.B. 2015. Polymorphisms in mucin genes in the development of gastric cancer. World J. Gastrointest. Oncol. 7, 328‒337.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dong Y., Walsh M.D., Cummings M.C., Wright R.G., Khoo S.K., Parsons P.G., McGuckin M.A. 1997. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J. Pathol. 183, 311‒317.CrossRefPubMedGoogle Scholar
  70. 70.
    Legrier M.E., de Pinieux G., Boye K., Arvelo F., Judde J.G., Fontaine J.J., Bara J., Poupon M.F. 2004. Mucinous differentiation features associated with hormonal escape in a human prostate cancer xenograft. Br. J. Cancer. 90, 720‒727.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cardillo M.R., Castagna G., Memeo L., De Bernardinis E., Di Silverio F. 2000. Epidermal growth factor receptor, MUC-1 and MUC-2 in bladder cancer. J. Exp. Clin. Cancer Res. 19, 225‒233.PubMedGoogle Scholar
  72. 72.
    Nishiumi N., Abe Y., Inoue Y., Hatanaka H., Inada K., Kijima H., Yamazaki H., Tatematsu M., Ueyama Y., Iwasaki M., Inoue H., Nakamura M. 2003. Use of 11p15 mucins as prognostic factors in small adenocarcinoma of the lung. Clin. Cancer Res. 9, 5616‒5619.PubMedGoogle Scholar
  73. 73.
    Hong S.M., Cho H., Moskaluk C.A., Frierson H.F., Jr., Yu E., Ro J.Y. 2005. CDX2 and MUC2 protein expression in extrahepatic bile duct carcinoma. Am. J. Clin. Pathol. 124, 361‒370.CrossRefPubMedGoogle Scholar
  74. 74.
    Ling Y., Zhu J., Gao L., Liu Y., Zhu C., Li R., Wei L., Zhang C. 2013. The silence of MUC2 mRNA induced by promoter hypermethylation associated with HBV in hepatocellular carcinoma. BMC Med. Genet. 14, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    van der Wekken A.J., Kuiper J.L., Saber A., Terpstra M.M., Wei J., Hiltermann T.J.N., Thunnissen E., Heideman D.A.M., Timens W., Schuuring E., Kok K., Smit E.F., van den Berg A., Groen H.J.M. 2017. Overall survival in EGFR mutated non-small-cell lung cancer patients treated with afatinib after EGFR TKI and resistant mechanisms upon disease progression. PLoS One. 12, e0182885.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rubenwolf P.C., Otto W., Denzinger S., Hofstadter F., Wieland W., Georgopoulos N.T. 2014. Expression of aquaporin water channels in human urothelial carcinoma: Correlation of AQP3 expression with tumour grade and stage. World J. Urol. 32, 991‒997.CrossRefPubMedGoogle Scholar
  77. 77.
    Hashimoto T., Kato M., Shimomura T., Kitamura N. 2010. TMPRSS13, a type II transmembrane serine protease, is inhibited by hepatocyte growth factor activator inhibitor type 1 and activates pro-hepatocyte growth factor. FEBS J. 277, 4888‒4900.CrossRefPubMedGoogle Scholar
  78. 78.
    Svoboda L.K., Teh S.S.K., Sud S., Kerk S., Zebolsky A., Treichel S., Thomas D., Halbrook C.J., Lee H.J., Kremer D., Zhang L., Klossowski S., Bankhead A.R., Magnuson B., Ljungman M., et al. 2018. Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J. Pathol. 245, 324‒336.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sato K., Masuda T., Hu Q., Tobo T., Kidogami S., Ogawa Y., Saito T., Nambara S., Komatsu H., Hirata H., Sakimura S., Uchi R., Hayashi N., Iguchi T., Eguchi H., et al. 2017. Phosphoserine phosphatase is a novel prognostic biomarker on chromosome 7 in colorectal cancer. Anticancer Res. 37, 2365‒2371.CrossRefPubMedGoogle Scholar
  80. 80.
    Tan E.H., Ramlau R., Pluzanska A., Kuo H.P., Reck M., Milanowski J., Au J.S., Felip E., Yang P.C., Damya-nov D., Orlov S., Akimov M., Delmar P., Essioux L., Hillenbach C., et al. 2010. A multicentre phase II gene expression profiling study of putative relationships between tumour biomarkers and clinical response with erlotinib in non-small-cell lung cancer. Ann. Oncol. 21, 217‒222.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bachelor M.A., Lu Y., Owens D.M. 2011. L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci. 63, 164‒172.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kim S.K., Jung W.H., Koo J.S. 2014. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One. 9, e101004.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sun W.Y., Kim H.M., Jung W.H., Koo J.S. 2016. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J. Transl. Med. 14, 168.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cui J., Yin Y., Ma Q., Wang G., Olman V., Zhang Y., Chou W.C., Hong C.S., Zhang C., Cao S., Mao X., Li Y., Qin S., Zhao S., Jiang J., et al. 2015. Comprehensive characterization of the genomic alterations in human gastric cancer. Int. J. Cancer. 137, 86‒95.CrossRefPubMedGoogle Scholar
  85. 85.
    Kanwal M., Ding X.J., Ma Z.H., Li L.W., Wang P., Chen Y., Huang Y.C., Cao Y. 2018. Characterization of germline mutations in familial lung cancer from the Chinese population. Gene. 641, 94‒104.CrossRefPubMedGoogle Scholar
  86. 86.
    Watanabe T., Miura T., Degawa Y., Fujita Y., Inoue M., Kawaguchi M., Furihata C. 2010. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer Cell Int. 10, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Khalilipour N., Baranova A., Jebelli A., Heravi-Moussavi A., Bruskin S., Abbaszadegan M.R. 2018. Familial esophageal squamous cell carcinoma with damaging rare/germline mutations in KCNJ12/ KCNJ18 and GPRIN2 genes. Cancer Genet. 221, 46‒52.CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang Y., Cai Q., Shu X.O., Gao Y.T., Li C., Zheng W., Long J. 2015. Whole-exome sequencing identifies novel somatic mutations in chinese breast cancer patients. J. Mol. Genet. Med. 9, pii: 183.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Tan H., Bao J., Zhou X. 2015. Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Sci. Rep. 5, 12566.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Busund L.T., Richardsen E., Busund R., Ukkonen T., Bjornsen T., Busch C., Stalsberg H. 2005. Significant expression of IGFBP2 in breast cancer compared with benign lesions. J. Clin. Pathol. 58, 361‒366.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wang H., Rosen D.G., Wang H., Fuller G.N., Zhang W., Liu J. 2006. Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod. Pathol. 19, 1149-1156.CrossRefPubMedGoogle Scholar
  92. 92.
    Richardsen E., Ukkonen T., Bjornsen T., Mortensen E., Egevad L., Busch C. 2003. Overexpression of IGBFB2 is a marker for malignant transformation in prostate epithelium. Virchows Arch. 442, 329‒335.PubMedGoogle Scholar
  93. 93.
    Subbannayya Y., Mir S.A., Renuse S., Manda S.S., Pinto S.M., Puttamallesh V.N., Solanki H.S., Manju H.C., Syed N., Sharma R., Christopher R., Vijayakumar M., Veerendra Kumar K.V., Keshava Prasad T.S., Ramaswamy G., et al. 2015. Identification of differentially expressed serum proteins in gastric adenocarcinoma. J. Proteomics. 127, 80‒88.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kendrick Z.W., Firpo M.A., Repko R.C., Scaife C.L., Adler D.G., Boucher K.M., Mulvihill S.J. 2014. Serum IGFBP2 and MSLN as diagnostic and prognostic biomarkers for pancreatic cancer. HPB (Oxford). 16, 670‒676.CrossRefPubMedGoogle Scholar
  95. 95.
    Yazawa T., Sato H., Shimoyamada H., Okudela K., Woo T., Tajiri M., Ogura T., Ogawa N., Suzuki T., Mitsui H., Ishii J., Miyata C., Sakaeda M., Goto K., Kashiwagi K., et al. 2009. Neuroendocrine cancer-specific up-regulating mechanism of insulin-like growth factor binding protein-2 in small cell lung cancer. Am. J. Pathol. 175, 976‒987.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Miyake H., Hara I., Yamanaka K., Muramaki M., Gleave M., Eto H. 2005. Introduction of insulin-like growth factor binding protein-2 gene into human bladder cancer cells enhances their metastatic potential. Oncol. Rep. 13, 341‒345.PubMedGoogle Scholar
  97. 97.
    Katayama H., Tamai K., Shibuya R., Nakamura M., Mochizuki M., Yamaguchi K., Kawamura S., Tochigi T., Sato I., Okanishi T., Sakurai K., Fujibuchi W., Arai Y., Satoh K. 2017. Long non-coding RNA HOTAIR promotes cell migration by upregulating insulin growth factor-binding protein 2 in renal cell carcinoma. Sci. Rep. 7, 12016.Google Scholar
  98. 98.
    Warnecke-Eberz U., Metzger R., Holscher A.H., Drebber U.,Bollschweiler E. 2016. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol. 37, 6349‒6358.CrossRefPubMedGoogle Scholar
  99. 99.
    Fung K.Y., Tabor B., Buckley M.J., Priebe I.K., Purins L., Pompeia C., Brierley G.V., Lockett T., Gibbs P., Tie J., McMurrick P., Moore J., Ruszkiewicz A., Nice E., Adams T.E., et al. 2015. Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One. 10, e0120425.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Hsieh D., Hsieh A., Stea B., Ellsworth R. 2010. IGFBP2 promotes glioma tumor stem cell expansion and survival. Biochem. Biophys. Res. Commun. 397, 367‒372.CrossRefPubMedGoogle Scholar
  101. 101.
    Chen X., Zheng J., Zou Y., Song C., Hu X., Zhang C.C. 2013. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J. Hematol. Oncol. 6, 72.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Lee C.F., Ling Z.Q., Zhao T., Lee K.R. 2008. Distinct expression patterns in hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma. World J. Gastroenterol. 14, 6072‒6077.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Tschoep K., Kohlmann A., Schlemmer M., Haferlach T., Issels R.D. 2007. Gene expression profiling in sarcomas. Crit. Rev. Oncol. Hematol. 63, 111‒124.CrossRefPubMedGoogle Scholar
  104. 104.
    Tombolan L., Orso F., Guzzardo V., Casara S., Zin A., Bonora M., Romualdi C., Giorgi C., Bisogno G., Alaggio R., Pinton P., De Pitta C., Taverna D., Rosolen A., Lanfranchi G. 2011. High IGFBP2 expression correlates with tumor severity in pediatric rhabdomyosarcoma. Am. J. Pathol. 179, 2611‒2624.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Fernandez-Madrid F., Tang N., Alansari H., Granda J.L., Tait L., Amirikia K.C., Moroianu M., Wang X., Karvonen R.L. 2004. Autoantibodies to annexin XI-A and other autoantigens in the diagnosis of breast cancer. Cancer Res. 64, 5089‒5096.CrossRefPubMedGoogle Scholar
  106. 106.
    Saini R.K., Attarha S., da Silva Santos C., Kolakowska J., Funa K., ouchelnytskyi S. 2014. Proteomics of dedifferentiation of SK-N-BE2 neuroblastoma cells. Biochem. Biophys. Res. Commun. 454, 202‒209.CrossRefPubMedGoogle Scholar
  107. 107.
    Wang S., Chen Y.Y., Li Y.P., Gu J., Gu S.D., Shi H., Li X.S., Lu X.N., Li X., Zhang S.L., Yu K.J., Liu K., Ji L.L. 2017. DISC1 overexpression promotes non-small cell lung cancer cell proliferation. Oncotarget. 8, 65199‒65210.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Li N., Zheng J., Li H., Deng J., Hu M., Wu H., Li W., Li F., Lan X., Lu J., Zhou Y. 2014. Identification of chimeric TSNAX-DISC1 resulting from intergenic splicing in endometrial carcinoma through high-throughput RNA sequencing. Carcinogenesis. 35, 2687‒2697.CrossRefPubMedGoogle Scholar
  109. 109.
    Ghoshal K., Motiwala T., Claus R., Yan P., Kutay H., Datta J., Majumder S., Bai S., Majumder A., Huang T., Plass C., Jacob S.T. 2010. HOXB13, a target of DNMT3B, is methylated at an upstream CpG island, and functions as a tumor suppressor in primary colorectal tumors. PLoS One. 5, e10338.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Srihari S., Ragan M.A. 2013. Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics. 29, 1553‒1561.CrossRefPubMedGoogle Scholar
  111. 111.
    Nagata K., Horinouchi M., Saitou M., Higashi M., Nomoto M., Goto M., Yonezawa S. 2007. Mucin expression profile in pancreatic cancer and the precursor lesions. J. Hepatobiliary Pancreat Surg. 14, 243‒254.CrossRefPubMedGoogle Scholar
  112. 112.
    Rakha E.A., Boyce R.W., Abd El-Rehim D., Kurien T., Green A.R., Paish E.C., Robertson J.F., Ellis I.O. 2005. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod. Pathol. 18, 1295‒1304.CrossRefPubMedGoogle Scholar
  113. 113.
    Betge J., Schneider N.I., Harbaum L., Pollheimer M.J., Lindtner R.A., Kornprat P., Ebert M.P., Langner C. 2016. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Arch. 469, 255‒265.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Levin J.Z., Berger M.F., Adiconis X., Rogov P., Melnikov A., Fennell T., Nusbaum C., Garraway L.A., Gnirke A. 2009. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol. 10, R115.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Fleming J.M., Ginsburg E., Oliver S.D., Goldsmith P., Vonderhaar B.K. 2012. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer. BMC Cancer. 12, 266.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Workman H.C., Miller J.K., Ingalla E.Q., Kaur R.P., Yamamoto D.I., Beckett L.A., Young L.J., Cardiff R.D., Borowsky A.D., Carraway K.L., Sweeney C., Carraway K.L., 3rd. 2009. The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells. Breast Cancer Res. 11, R70.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Nguyen P.L., Niehans G.A., Cherwitz D.L., Kim Y.S., Ho S.B. 1996. Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer. Tumour Biol. 17, 176‒192.CrossRefPubMedGoogle Scholar
  118. 118.
    Munro E.G., Jain M., Oliva E., Kamal N., Lele S.M., Lynch M.P., Guo L., Fu K., Sharma P., Remmenga S., Growdon W.B., Davis J.S., Rueda B.R., Batra S.K. 2009. Upregulation of MUC4 in cervical squamous cell carcinoma: Pathologic significance. Int J. Gynecol. Pathol. 28, 127‒133.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Senapati S., Chaturvedi P., Sharma P., Venkatraman G., Meza J.L., El-Rifai W., Roy H.K., Batra S.K. 2008. Deregulation of MUC4 in gastric adenocarcinoma: Potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer. Br. J. Cancer. 99, 949‒956.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Chauhan S.C., Singh A.P., Ruiz F., Johansson S.L., Jain M., Smith L.M., Moniaux N., Batra S.K. 2006. Aberrant expression of MUC4 in ovarian carcinoma: Diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod. Pathol. 19, 1386‒1394.CrossRefPubMedGoogle Scholar
  121. 121.
    Andrianifahanana M., Moniaux N., Schmied B.M., Ringel J., Friess H., Hollingsworth M.A., Buchler M.W., Aubert J.P., Batra S.K. 2001. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: A potential role of MUC4 as a tumor marker of diagnostic significance. Clin. Cancer Res. 7, 4033‒4040.PubMedGoogle Scholar
  122. 122.
    Singh A.P., Chauhan S.C., Bafna S., Johansson S.L., Smith L.M., Moniaux N., Lin M.F., Batra S.K. 2006. Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate. 66, 421‒429.CrossRefPubMedGoogle Scholar
  123. 123.
    Bruyere E., Jonckheere N., Frenois F., Mariette C., Van Seuningen I. 2011. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein. Biochem. Biophys. Res. Commun. 413, 325‒329.CrossRefPubMedGoogle Scholar
  124. 124.
    Lee K.T., Liu T.S. 2001. Altered mucin gene expression in stone-containing intrahepatic bile ducts and cholangiocarcinomas. Dig. Dis. Sci. 46, 2166‒2172.CrossRefPubMedGoogle Scholar
  125. 125.
    Harvey R.C., Mullighan C.G., Wang X., Dobbin K.K., Davidson G.S., Bedrick E.J., Chen I.M., Atlas S.R., Kang H., Ar K., Wilson C.S., Wharton W., Murphy M., Devidas M., Carroll A.J., et al. 2010. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: Correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 116, 4874‒4884.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Teicher B.A. 2012. Searching for molecular targets in sarcoma. Biochem. Pharmacol. 84, 1‒10.CrossRefPubMedGoogle Scholar
  127. 127.
    Doyle L.A., Moller E., Dal Cin P., Fletcher C.D., Mertens F., Hornick J.L. 2011. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am. J. Surg. Pathol. 35, 733‒741.CrossRefPubMedGoogle Scholar
  128. 128.
    UniProt Consortium T. 2018. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 46, 2699.Google Scholar
  129. 129.
    Liu X.F., Bera T.K., Liu L.J., Pastan I. 2009. A primate-specific POTE-actin fusion protein plays a role in apoptosis. Apoptosis. 14, 1237‒1244.CrossRefPubMedGoogle Scholar
  130. 130.
    Kudryavtseva A.V., Fedorova M.S., Zhavoronkov A., Moskalev A.A., Zasedatelev A.S., Dmitriev A.A., Sadritdinova A.F., Karpova I.Y., Nyushko K.M., Kalinin D.V., Volchenko N.N., Melnikova N.V., Klimina K.M., Sidorov D.V., Popov A.Y., et al. 2016. Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genet. 17, 156.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Snezhkina A.V., Krasnov G.S., Zaretsky A.R., Zhavoronkov A., Nyushko K.M., Moskalev A.A., Karpova I.Y., Afremova A.I., Lipatova A.V., Kochetkov D.V., Fedorova M.S., Volchenko N.N., Sadritdinova A.F., Melnikova N.V., Sidorov D.V., et al. 2016. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. BMC Genomics. 17, 1011.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Snezhkina A.V., Krasnov G.S., Lipatova A.V., Sadritdinova A.F., Kardymon O.L., Fedorova M.S., Melnikova N.V., Stepanov O.A., Zaretsky A.R., Kaprin A.D., Alekseev B.Y., Dmitriev A.A., Kudryavtseva A.V. 2016. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPbeta rather than enterotoxigenic bacteroides fragilis infection. Oxid. Med. Cell Longev. 2016, 2353560.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Belinda L.W., Wei W.X., Hanh B.T., Lei L.X., Bow H., Ling D.J. 2008. SARM: A novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol. Immunol. 45, 1732‒1742.CrossRefPubMedGoogle Scholar
  134. 134.
    Gerdts J., Summers D.W., Milbrandt J., DiAntonio A. 2016. Axon self-destruction: New links among SARM1, MAPKs, and NAD+ metabolism. Neuron. 89, 449‒460.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Di Stefano M., Loreto A., Orsomando G., Mori V., Zamporlini F., Hulse R.P., Webster J., Donaldson L.F., Gering M., Raffaelli N., Coleman M.P., Gilley J., Conforti L. 2017. NMN deamidase delays wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784‒794.CrossRefPubMedGoogle Scholar
  136. 136.
    Austin C.P., Ky B., Ma L., Morris J.A., Shughrue P.J. 2004. Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience. 124, 3‒10.CrossRefPubMedGoogle Scholar
  137. 137.
    Duan X., Chang J.H., Ge S., Faulkner R.L., Kim J.Y., Kitabatake Y., Liu X.B., Yang C.H., Jordan J.D., Ma D.K., Liu C.Y., Ganesan S., Cheng H.J., Ming G.L., Lu B., Song H. 2007. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 130, 1146‒1158.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Namba T., Ming G.L., Song H., Waga C., Enomoto A., Kaibuchi K., Kohsaka S., Uchino S. 2011. NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via disrupted-in-schizophrenia 1 (DISC1). J. Neurochem. 118, 34‒44.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Ekelund J., Hovatta I., Parker A., Paunio T., Varilo T., Martin R., Suhonen J., Ellonen P., Chan G., Sinsheimer J.S., Sobel E., Juvonen H., Arajarvi R., Partonen T., Suvisaari J., et al. 2001. Chromosome 1 loci in Finnish schizophrenia families. Hum. Mol. Genet. 10, 1611‒1617.CrossRefPubMedGoogle Scholar
  140. 140.
    Park S.J., Lee S.B., Suh Y., Kim S.J., Lee N., Hong J.H., Park C., Woo Y., Ishizuka K., Kim J.H., Berggren P.O., Sawa A., Park S.K. 2017. DISC1 modulates neuronal stress responses by gate-keeping ER-mitochondria Ca2+ transfer through the MAM. Cell Rep. 21, 2748–2759.CrossRefPubMedGoogle Scholar
  141. 141.
    Chen X., Guo C., Kong J. 2012. Oxidative stress in neurodegenerative diseases. Neural. Regen. Res. 7, 376‒385.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Yeo M., Lin P.S., Dahmus M.E., Gill G.N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078‒26085.CrossRefPubMedGoogle Scholar
  143. 143.
    Yeo M., Lee S.K., Lee B., Ruiz E.C., Pfaff S.L., Gill G.N. 2005. Small CTD phosphatases function in silencing neuronal gene expression. Science. 307, 596‒600.CrossRefPubMedGoogle Scholar
  144. 144.
    Zhu Y., Lu Y., Zhang Q., Liu J.J., Li T.J., Yang J.R., Zeng C., Zhuang S.M. 2012. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 40, 4615‒4625.CrossRefPubMedGoogle Scholar
  145. 145.
    Wu Y., Evers B.M., Zhou B.P. 2009. Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J. Biol. Chem. 284, 640‒648.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Sapkota G., Knockaert M., Alarcon C., Montalvo E., Brivanlou A.H., Massague J. 2006. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J. Biol. Chem. 281, 40412‒40419.CrossRefPubMedGoogle Scholar
  147. 147.
    Fedorova M.S., Snezhkina A.V., Pudova E.A., Abramov I.S., Lipatova A.V., Kharitonov S.L., Sadritdinova A.F., Nyushko K.M., Klimina K.M., Belyakov M.M., Slavnova E.N., Melnikova N.V., Chernichenko M.A., Sidorov D.V., Kiseleva M.V., et al. 2017. Upregulation of NETO2 gene in colorectal cancer. BMC Genet. 18, 117.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Pudova E.A., Kudryavtseva A.V., Fedorova M.S., Zaretsky A.R., Shcherbo D.S., Lukyanova E.N., Popov A.Y., Sadritdinova A.F., Abramov I.S., Kharitonov S.L., Krasnov G.S., Klimina K.M., Koroban N.V., Volchenko N.N., Nyushko K.M., et al. 2018. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics. 19, 113.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Yao X., Sun S., Zhou X., Guo W., Zhang L. 2016. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol. 37, 1451‒1459.CrossRefPubMedGoogle Scholar
  150. 150.
    Liou J.M., Shun C.T., Liang J.T., Chiu H.M., Chen M.J., Chen C.C., Wang H.P., Wu M.S., Lin J.T. 2010. Plasma insulin-like growth factor-binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer. J. Clin. Endocrinol. Metab. 95, 1717‒1725.CrossRefPubMedGoogle Scholar
  151. 151.
    Wang G.K., Hu L., Fuller G.N., Zhang W. 2006. An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility. J. Biol. Chem. 281, 14085‒14091.CrossRefPubMedGoogle Scholar
  152. 152.
    Wang H., Arun B.K., Wang H., Fuller G.N., Zhang W., Middleton L.P., Sahin A.A. 2008. IGFBP2 and IGFBP5 overexpression correlates with the lymph node metastasis in T1 breast carcinomas. Breast J. 14, 261‒267.CrossRefPubMedGoogle Scholar
  153. 153.
    Godard S., Getz G., Delorenzi M., Farmer P., Kobayashi H., Desbaillets I., Nozaki M., Diserens A.C., Hamou M.F., Dietrich P.Y., Regli L., Janzer R.C., Bucher P., Stupp R., de Tribolet N., et al. 2003. Classification of human astrocytic gliomas on the basis of gene expression: A correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. 63, 6613‒6625.PubMedGoogle Scholar
  154. 154.
    Neuhausen S.L., Brummel S., Ding Y.C., Singer C.F., Pfeiler G., Lynch H.T., Nathanson K.L., Rebbeck T.R., Garber J.E., Couch F., Weitzel J., Narod S.A., Ganz P.A., Daly M.B., Godwin A.K., et al. 2009. Genetic variation in insulin-like growth factor signaling genes and breast cancer risk among BRCA1 and BRCA2 carriers. Breast Cancer Res. 11, R76.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Davy B.E., Robinson M.L. 2003. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum. Mol. Genet. 12, 1163‒1170.CrossRefPubMedGoogle Scholar
  156. 156.
    Doggett N.A., Xie G., Meincke L.J., Sutherland R.D., Mundt M.O., Berbari N.S., Davy B.E., Robinson M.L., Rudd M.K., Weber J.L., Stallings R.L., Han C. 2006. A 360-kb interchromosomal duplication of the human HYDIN locus. Genomics. 88, 762‒771.CrossRefPubMedGoogle Scholar
  157. 157.
    Olbrich H., Schmidts M., Werner C., Onoufriadis A., Loges N.T., Raidt J., Banki N.F., Shoemark A., Burgoyne T., Al Turki S., Hurles M.E., Consortium U.K., Kohler G., Schroeder J., Nurnberg G., et al. 2012. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 91, 672‒684.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Robinson M.L., Allen C.E., Davy B.E., Durfee W.J., Elder F.F., Elliott C.S., Harrison W.R. 2002. Genetic mapping of an insertional hydrocephalus-inducing mutation allelic to hy3. Mamm. Genome. 13, 625‒632.CrossRefPubMedGoogle Scholar
  159. 159.
    Laske K., Shebzukhov Y.V., Grosse-Hovest L., Kuprash D.V., Khlgatian S.V., Koroleva E.P., Sazykin A.Y., Penkov D.N., Belousov P.V., Stevanovic S., Vass V., Walter S., Eisel D., Schmid-Horch B.D., Nedospasov S.A., et al. 2013. Alternative variants of human HYDIN are novel cancer-associated antigens recognized by adaptive immunity. Cancer Immunol. Res. 1, 190‒200.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Snezhkina
    • 1
    Email author
  • E. N. Lukyanova
    • 1
  • M. S. Fedorova
    • 1
  • D. V. Kalinin
    • 2
  • N. V. Melnikova
    • 1
  • O. A. Stepanov
    • 1
    • 3
  • M. V. Kiseleva
    • 3
  • A. D. Kaprin
    • 3
  • E. A. Pudova
    • 1
  • A. V. Kudryavtseva
    • 1
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Vishnevsky Institute of Surgery, Ministry of Health of the Russian FederationMoscowRussia
  3. 3.National Medical Research Radiological Center, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations