Advertisement

Molecular Biology

, Volume 53, Issue 4, pp 484–500 | Cite as

Prospects For the Use of Peptides against Respiratory Syncytial Virus

  • I. P. ShilovskiyEmail author
  • S. M. Andreev
  • K. V. Kozhikhova
  • A. A. Nikolskii
  • M. R. Khaitov
REVIEWS
  • 47 Downloads

Abstract

The human respiratory syncytial virus (RSV) is one of the most common viral pathogens that affects the lower respiratory tract and could be a reason of bronchiolitis and/or pneumonia. Currently, there are no available effective ways of treating the RSV infection. Attempts to develop preventive vaccine have been unsuccessful. The only therapeutic agent used for RSV treatment is virazole (ribavirin); however, it induces adverse effects. Medications based on neutralizing monoclonal antibodies, such as IGIV (Respigam), palivizumab (Synagis), and MEDI-524 (Numab), are under clinical trials; however, their use will be limited by their high cost. One of the promising approaches for antiviral therapy is the use of natural peptides (defensins and cathelicidins), or their synthetic analogs. The majority of currently described antiviral peptides are developed against the human immunodeficiency virus, the herpes simplex virus, and the influenza virus. At the same time, a body of experimental data evidencing anti-RSV activity of peptides has been accumulated. The main advantages of peptide drugs are their wide spectrum of antiviral activity and low toxicity. However, there are obstacles in implementing peptide-based drugs in clinical practice. Due to their low resistance to the action of serum proteases, most authors consider peptides promising only for local application. Given that RSV affects the epithelium of the respiratory tract, where the protease activity is lower than in the systemic circulation, it is possible to develop locally active peptide drugs, for example, as inhalation forms. Their stability could also be increased by the synthesis of dendrimer peptides and by the development of recombinant peptides as precursor proteins. Anti-RSV peptides can be divided into several groups: (1) attachment and/or fusion blockers; (2) peptides displaying direct virucidal activity, disrupting the viral envelope. Such peptides, which suppress early stages of the viral life cycle, are considered prophylactic agents. However, for several peptides, their immunoregulatory properties have been described, which opens the possibility for therapeutic use. This review summarizes the information on the antiviral properties of such peptides and mechanisms of their action and describes the prospects of the future development of antiviral peptides.

Keywords:

respiratory syncytial virus synthetic peptides antimicrobial peptides antiviral peptides 

Notes

FUNDING

The work was supported by the Russian Science Foundation (project no. 18-74-10002).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Jartti T., Gern J.E. 2017. Role of viral infections in the development and exacerbation of asthma in children. J. Allergy Clin. Immunol. 140, 895–906.CrossRefPubMedGoogle Scholar
  2. 2.
    Hall C.B., Weinberg G.A., Iwane M.K., Blumkin A.K., Edwards K.M., Staat M.A., Auinger P., Griffin M.R., Poehling K.A., Erdman D., Grijalva C.G., Zhu Y., Szilagyi P. 2009. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 360, 588–598.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muralidharan A., Li C., Wang L., Li X. 2017. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Exp. Rev. Vaccines. 16, 351–360.CrossRefGoogle Scholar
  4. 4.
    Janai H.K., Marks M.I., Zaleska M., Stutman H.R. 1990. Ribavirin: Adverse drug reactions, 1986 to 1988. Pediatr. Infect. Dis. J. 9, 209–211.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang D., Cummins C., Bayliss S., Sandercock J., Burls A. 2008. Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: A systematic review and economic evaluation. Health Technol. Assessment. 12, 1–86.Google Scholar
  6. 6.
    Khaitov M.R., Litvin L.S., Shilovsky I.P., Bashkatova Yu.N., Faizuloev E.B., Zverev V.V. 2010. RNA interference. New approaches to the development of antiviral agents. Immunologiya. 31, 69–76.Google Scholar
  7. 7.
    Osminkina L.A., Timoshenko V.Yu., Shilovsky I.P., Kornilaeva G.V., Shevchenko S.N., Gongalsky M.B., Tamarov K.P., Abramchuk S.S., Nikiforov V.N., Khaitov M.R., Karamov E.V. 2014. Porous silicon nanoparticles as scavengers of hazardous viruses. J. Nanoparticle Res. 16, 2430.CrossRefGoogle Scholar
  8. 8.
    Battles M.B., Langedijk J.P., Furmanova-Hollenstein P., Chaiwatpongsakorn S., Costello H.M., Kwanten L., Vranckx L., Vink P., Jaensch S., Jonckers T.H., Koul A., Arnoult E., Peeples M.E., Roymans D., McLellan J.S. 2016. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 12, 87–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Findlay E.G., Currie S.M., Davidson D.J. 2013. Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs. 27, 479–493.CrossRefGoogle Scholar
  10. 10.
    Zhao H., Zhou J., Zhang K., Chu H., Liu D., Poon V.K.M., Chan C.C.S., Leung H.C., Fai H., Lin Y.P., Zhang A.J.X., Jin D.Y., Yuen K.Y., Zheng B.J. 2016. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci. Rep. 6, 22008.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fjell C.D., Hiss J.A., Hancock R.E.W., Schneider G. 2012. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 11, 37–51.CrossRefGoogle Scholar
  12. 12.
    Shepherd N.E., Hoang H.N., Desai V.S., Letouze E., Young P.R., Fairlie D.P. 2006. Modular α-helical mimetics with antiviral activity against respiratory syncytial virus. J. Am. Chem. Soc. 128, 13284–13289.CrossRefPubMedGoogle Scholar
  13. 13.
    Collins P.L., Fearns R., Graham B.S. 2013. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease. Curr. Top. Microbiol. Immunol. 372, 3–38.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Battles M.B., McLellan J.S. 2019. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17 (4), 233–245.  https://doi.org/10.1038/s41579-019-0149-x CrossRefPubMedGoogle Scholar
  15. 15.
    Griffiths C., Drews S.J., Marchant D.J. 2017. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev. 30, 277–319.CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson S.M., McNally B.A., Ioannidis I., Flano E., Teng M.N., Oomens A.G., Walsh E.E., Peeples M.E. 2015. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathogens. 11, e1005318.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tayyari F., Marchant D., Moraes T.J., Duan W., Mastrangelo P., Hegele R.G. 2011. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat. Med. 17, 1132–1135.CrossRefPubMedGoogle Scholar
  18. 18.
    Shahriari S., Gordon J., Ghildyal R. 2016. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virology J. 13, 161.CrossRefGoogle Scholar
  19. 19.
    Ericksen B., Wu Z., Lu W., Lehrer R.I. 2005. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob. Agents Chemother. 49, 269–275.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Holly M.K., Diaz K., Smith J.G. 2017. Defensins in viral infection and pathogenesis. Annu. Rev. Virol. 4, 369–391.CrossRefPubMedGoogle Scholar
  21. 21.
    Demirkhanyan L.H., Marin M., Padilla-Parra S., Zhan C., Miyauchi K., Jean-Baptiste M., Novitskiy G., Lu W., Melikyan G.B. 2012. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem. 287, 28821–28838.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skalickova S., Heger Z., Krejcova L., Pekarik V., Bastl K., Janda J., Kostolansky F., Vareckova E., Zitka O., Adam V., Kizek R. 2015. Perspective of use of antiviral peptides against influenza virus. Viruses. 7, 5428–5442.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chow B.T., Soto M., Lo B.L., Crosby D.C., Camerini D. 2012. Antibacterial activity of four human beta-defensins: HBD-19, HBD-23, HBD-27, and HBD-29. Polymers. 4, 747–758.CrossRefGoogle Scholar
  24. 24.
    Hazrati E., Galen B., Lu W., Wang W., Ouyang Y., Keller M.J., Lehrer R.I., Herold B.C. 2006. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol. 177, 8658–8666.CrossRefPubMedGoogle Scholar
  25. 25.
    Lafferty M.K., Sun L., Christensen-Quick A., Lu W., Garzino-Demo A. 2017. Human beta defensin 2 selectively inhibits HIV-1 in highly permissive CCR6+CD4+ T cells. Viruses. 9, 111.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jiang Y., Yang D., Li W., Wang B., Jiang Z., Li M. 2012. Antiviral activity of recombinant mouse β-defensin 3 against influenza A virus in vitro and in vivo. Antivir. Chem. Chemother. 22, 255–262.CrossRefPubMedGoogle Scholar
  27. 27.
    Kota S., Sabbah A., Chang T.H., Harnack R., Xiang Y., Meng X., Bose S. 2008. Role of human β-defensin-2 during tumor necrosis factor-α/NF-κB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 283, 22417–22429.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yasin B., Wang W., Pang M., Cheshenko N., Hong T., Waring A.J., Herold B.C., Wagar E.A., Lehrer R.I. 2004. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Seidel A., Ye Y., de Armas L.R., Soto M., Yarosh W., Marcsisin R.A., Tran D., Selsted M.E., Camerini D. 2010. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One. 5, e9737.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Prantner D., Shirey K.A., Lai W., Lu W., Cole A.M., Vogel S.N., Garzino-Demo A. 2017. The θ-defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection. J. Leukoc. Biol. 102, 1103–1113.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fabisiak A., Murawska N., Fichna J. 2016. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol. Rep. 68, 802–808.CrossRefPubMedGoogle Scholar
  32. 32.
    Wong J.H., Legowska A., Rolka K., Ng T.B., Hui M., Cho C.H., Lam W.W., Au S.W., Gu O.W., Wan D.C. 2011. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides. 32, 1117–1122.CrossRefPubMedGoogle Scholar
  33. 33.
    Barlow P.G., Svoboda P., Mackellar A., Nash A.A., York I.A., Pohl J., Davidson D.J., Donis R.O. 2011. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One. 6, e25333.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Currie S.M., Findlay E.G., McHugh B.J., Mackellar A., Man T., Macmillan D., Wang H., Fitch P.M., Schwarze J., Davidson D.J. 2013. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One. 8, e73659.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bose S., Kar N., Maitra R., DiDonato J., Banerjee A.K. 2003. Temporal activation of NF-κB regulates an interferon-independent innate antiviral response against cytoplasmic RNA viruses. Proc. Natl. Acad. Sci. U. S. A. 100, 10890–10895.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lambert D.M., Barney S., Lambert A.L., Guthrie K., Medinas R., Davis D.E., Bucy T., Erickson J., Merutka G., Petteway S.R. Jr. 1996. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Med. Sci. 93, 2186–2191.Google Scholar
  37. 37.
    Gorman J.J., McKimm-Breschkin J.L., Norton R.S., Barnham K.J. 2001. Antiviral activity and structural characteristics of the nonglycosylated central subdomain of human respiratory syncytial virus attachment (G) glycoprotein. J. Biol. Chem. 276, 38988–38994.CrossRefPubMedGoogle Scholar
  38. 38.
    Donalisio M., Rusnati M., Cagno V., Civra A., Bugatti A., Giuliani A., Pirri G., Volante M., Papotti M., Landolfo S., Lembo D. 2012. Inhibition of human respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide. Antimicrob. Agents Chemother. 56, 5278–5288.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Donalisio M., Rusnati M., Civra A., Bugatti A., Allemand D., Pirri G., Giuliani A., Landolfo S., Lembo D. 2010. Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrob. Agents Chemother. 54, 4290–4299.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Currie S.M., Gwyer Findlay E., McFarlane A.J., Fitch P.M., Böttcher B., Colegrave N., Paras A., Jozwik A., Chiu C., Schwarze J., Davidson D.J. 2016. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol. 196, 2699–2710.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vanheule V., Vervaeke P., Mortier A., Noppen S., Gouwy M., Snoeck R., Andrei G., Van Damme J., Liekens S., Proost P. 2016. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem. Pharmacol. 100, 73–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Uddin M.B., Lee B.H., Nikapitiya C., Kim J.H., Kim T.H., Lee H.C., Kim C.G., Lee J.S., Kim C.J. 2016. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 54, 853–866.CrossRefPubMedGoogle Scholar
  43. 43.
    Pastey M.K., Gower T.L., Spearman P.W., Crowe J.E., Jr., Graham B.S. 2000. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat. Med. 6, 35–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Ortega-Berlanga B., Musiychuk K., Shoji Y., Chichester J.A., Yusibov V., Patiño-Rodríguez O., Noyola D.E., Alpuche-Solís Á.G. 2016. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants. Planta. 243, 451–458.CrossRefPubMedGoogle Scholar
  45. 45.
    Sundukova M.S., Shilovskiy I.P., Andreev S.M., Kuptsova M.M., Khaitov M.R. 2017. Synthetic cationic peptides with linear helical and dendrimeric structures effectively reduce respiratory virus infection in vitro. Allergy. 72, 300–301.CrossRefGoogle Scholar
  46. 46.
    Bishop J.R., Schuksz M., Esko J.D. 2007. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446, 1030–1037.CrossRefPubMedGoogle Scholar
  47. 47.
    Feldman S.A., Audet S., Beeler J.A. 2000. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol. 74, 6442–6447.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., Zal T., Mellman I., Schröder J.M., Liu Y.J., Gilliet M. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449, 564–569.CrossRefPubMedGoogle Scholar
  49. 49.
    Marcos J.F., Gandía M. 2009. Antimicrobial peptides: To membranes and beyond. Exp. Opin. Drug Discov. 4, 659–671.CrossRefGoogle Scholar
  50. 50.
    Gordon-Grossman M., Zimmermann H., Wol S.G., Shai Y., Goldfarb D. 2012. Investigation of model membrane disruption mechanism by melittin using pulse electron paramagnetic resonance spectroscopy and cryogenic transmission electron microscopy. J. Phys. Chem. B. 116, 179–188.CrossRefPubMedGoogle Scholar
  51. 51.
    Ghanem A., Mayer D., Chase G., Tegge W., Frank R., Kochs G., García-Sastre A., Schwemmle M. 2007. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81, 7801–7804.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Salvatore M., Garcia-Sastre A., Ruchala P., Lehrer R.I., Chang T., Klotman M.E. 2007. α-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196, 835–843.CrossRefPubMedGoogle Scholar
  53. 53.
    Tecle T., White M.R., Gantz D., Crouch E.C., Hartshorn K.L. 2007. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol. 178, 8046–8052.CrossRefPubMedGoogle Scholar
  54. 54.
    Lai Y., Adhikarakunnathu S., Bhardwaj K., Ranjith-Kumar C.T., Wen Y., Jordan J.L., Wu L.H., Dragnea B., San Mateo L., Kao C.C. 2011. Ll37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS One. 6, e26632.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Qu P., Gao W., Chen H., Li D., Yang N., Zhu J., Feng X., Liu C., Li Z. 2016. The central hinge link truncation of the antimicrobial peptide fowlicidin-3 enhances its cell selectivity without antibacterial activity loss. Antimicrob. Agents Chemother. 60, 2798–2806.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lin M.C., Hui C.F., Chen J.Y., Wu J.L. 2013. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides. 44, 139–148.CrossRefPubMedGoogle Scholar
  57. 57.
    Boas U., Heegaard P.M.H. 2004. Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63.CrossRefPubMedGoogle Scholar
  58. 58.
    Svenson S., Tomalia D.A. 2012. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Del. Rev. 57, 2106–2129.CrossRefGoogle Scholar
  59. 59.
    Cloninger M.J. 2002. Biological applications of dendrimers. Curr. Opin. Chem. Biol. 9, 341.Google Scholar
  60. 60.
    Luganini A., Giuliani A., Pirri G., Pizzuto L., Landolfo S., Gribaudo G. 2010. Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antiviral Res. 85, 532–540.CrossRefPubMedGoogle Scholar
  61. 61.
    Luganini A., Nicoletto S.F., Pizzuto L., Pirri G., Giuliani A., Landolfo S., Gribaudo G. 2011. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 55, 3231–3239.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. P. Shilovskiy
    • 1
    Email author
  • S. M. Andreev
    • 1
  • K. V. Kozhikhova
    • 1
  • A. A. Nikolskii
    • 1
  • M. R. Khaitov
    • 1
  1. 1.National Research Center—Institute of Immunology, Federal Medical-Biological AgencyMoscowRussia

Personalised recommendations