Molecular Biology

, Volume 53, Issue 4, pp 606–611 | Cite as

Preparation of Human Skeletal Muscle Samples for Proteomic Analysis with Isobaric iTRAQ Labels

  • D. V. PopovEmail author
  • O. L. Vinogradova
  • V. G. Zgoda


In the past decade, mass spectrometry studies of skeletal muscles have become common. In this tissue, the abundance of several contractile proteins significantly limits the depth of the panoramic proteome analysis. The use of isobaric labels allows improving assessment of the changes in the protein content, while analyzing up to 10 samples in a single run. Here we present the results of a comparative study of various methods for the fractionation of skeletal muscle peptides labeled with an isobaric label iTRAQ. Samples from m. vastus lateralis of eight young males were collected with a needle biopsy. After digestion into peptides and labeling, the preparations were carried out according to three different protocols: (1) peptide purification, HPLC-MS/MS; (2) peptide purification, isoelectric focusing, HPLC-MS/MS; (3) high pH reverse-phase LC fractionation, HPLC-MS/MS. Fractionation of labeled peptides by high pH reverse-phase LC was the optimal strategy for increasing the depth of the proteome analysis. This approach, in addition to contractile and mitochondrial proteins, allowed us to detect a variety of regulatory molecules, including the nucleic acids binding the proteins, chaperones, receptors, and transcription factors.


mass spectrometry proteome skeletal muscle peptide fractionation isobaric label Itraq 



This study was supported by the Russian Foundation for Basic Research, project no. 17-00-00308 (17-00-00242).


Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals and humans as subjects. This study was approved by the Biomedical Ethics Committee of the Institute of Biomedical Problems, Russian Academy of Sciences, Moscow. All participants signed their informed consent for participation in this study.


  1. 1.
    Pedersen B.K., Febbraio M.A. 2012. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8 (8), 457–465.CrossRefGoogle Scholar
  2. 2.
    Demontis F., Piccirillo R., Goldberg A.L., Perrimon N. 2013. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell. 12 (6), 943–949.CrossRefGoogle Scholar
  3. 3.
    Agudelo L.Z., Femenia T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., Pettersson A.T., Ferreira D.M.S., Krook A., Barres R., Zierath J.R., et al. 2014. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 159 (1), 33–45.CrossRefGoogle Scholar
  4. 4.
    Cervenka I., Agudelo L.Z., Ruas J.L. 2017. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 357 (6349), pii: eaaf9794. CrossRefGoogle Scholar
  5. 5.
    Deshmukh A.S., Murgia M., Nagaraj N., Treebak J.T., Cox J., Mann M. 2015. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell Proteomics. 14 (4), 841–853.CrossRefGoogle Scholar
  6. 6.
    Yang Y., Qiang X., Owsiany K., Zhang S., Thannhauser T.W., Li L. 2011. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J. Proteome. Res. 10 (10), 4647–4660.CrossRefGoogle Scholar
  7. 7.
    Evans C., Noirel J., Ow S.Y., Salim M., Pereira-Medrano A.G., Couto N., Pandhal J., Smith D., Pham T.K., Karunakaran E., Zou X., Biggs C.A., Wright P.C. 2012. An insight into iTRAQ: Where do we stand now? Anal. Bioanal. Chem. 404 (4), 1011–1027.CrossRefGoogle Scholar
  8. 8.
    Rauniyar N., Yates J.R., 3rd. 2014. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13 (12), 5293–5309.CrossRefGoogle Scholar
  9. 9.
    Popov D.V., Lysenko E.A., Bokov R.O., Volodina M.A., Kurochkina N.S., Makhnovskii P.A., Vyssokikh M.Y., Vinogradova O.L. 2018. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol. Rep. 6 (17), e13868.CrossRefGoogle Scholar
  10. 10.
    Wisniewski J.R., Zougman A., Nagaraj N., Mann M. 2009. Universal sample preparation method for proteome analysis. Nat. Methods. 6 (5), 359–362.CrossRefGoogle Scholar
  11. 11.
    Rappsilber J., Mann M., Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2 (8), 1896–1906.CrossRefGoogle Scholar
  12. 12.
    Stein D.R., Hu X., McCorrister S.J., Westmacott G.R., Plummer F.A., Ball T.B., Carpenter M.S. 2013. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics. 13 (20), 2956–2966.Google Scholar
  13. 13.
    Wang H., Sun S., Zhang Y., Chen S., Liu P., Liu B. 2015. An off-line high pH reversed-phase fractionation and nano-liquid chromatography–mass spectrometry method for global proteomic profiling of cell lines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 974, 90–95.CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Freire M., Semba R.D., Ubaida-Mohien C., Fabbri E., Scalzo P., Hojlund K., Dufresne C., Lyashkov A., Ferrucci L. 2017. The Human Skeletal Muscle Proteome Project: A reappraisal of the current literature. J. Cachexia. Sarcopenia. Muscle. 8 (1), 5–18.CrossRefGoogle Scholar
  15. 15.
    Capitanio D., Moriggi M., Gelfi C. 2017. Mapping the human skeletal muscle proteome: Progress and potential. Expert Rev. Proteomics. 14 (9), 825–839.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. V. Popov
    • 1
    • 2
    Email author
  • O. L. Vinogradova
    • 1
    • 2
  • V. G. Zgoda
    • 3
  1. 1.Institute of Biomedical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Department of Fundamental Medicine, Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Orekhovich Research Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations