Advertisement

Molecular Biology

, Volume 53, Issue 4, pp 586–595 | Cite as

Features of the Structure and Expression of NPM and NCL Genes in Cutaneous Melanoma

  • D. A. Ponkratova
  • A. A. LushnikovaEmail author
MOLECULAR CELL BIOLOGY

Abstract—

Malignant cutaneous melanoma (CM) is an extremely aggressive cancer characterized by a high level of metastatic activity and unfavorable prognosis due to a high incidence of relapses, as well as resistance to standard chemotherapy. Cutaneous melanoma accounts for 80% of deaths from malignant skin tumors. Nucleolin/C23 and nucleophosmin/B23, which constitute altogether ~70% of the nucleolus volume, are promising targets for molecular therapy of melanoma. These proteins perform many important functions in the cell, so disruption of the NCL and/or NPM gene structure and abnormal expression of the C23 and B23 proteins they encode, can lead to unlimited cell proliferation and progression of a tumor. Therefore, investigation of the structure and expression of these genes is a topical problem, which is important for understanding the mechanisms of CM carcinogenesis and for the development of new therapeutic approaches. This paper describes new NCL and NPM polymorphisms, as well as the levels of C23 and B23 expression in normal tissues, CM and mucosal melanoma.

Keywords:

cutaneous melanoma mucosal melanoma nucleophosmin B23 NPM nucleolin C23 NCL gene polymorphism gene expression carcinogenesis 

Notes

FUNDING

This work was supported by a state assignment of the Ministry of Health of the Russian Federation for research projects (state register no. 114112440122).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study design was approved by the Ethics Committee of the Blokhin Center. All patients gave their written informed consent to the use of their tissue specimens in the research project.

REFERENCES

  1. 1.
    Standartizovannye pokazateli onkoepidemiologicheskoi situatsii 2016 g. (Standardized Characteristics of the Oncoepidemiological Situation in 2016). 2018. Euras. J. Oncol. 6 (2).Google Scholar
  2. 2.
    Box J.K., Paquet N., Adams M.N., Boucher D., Bolderson E., O’Byrne K.J., Richard D.J. 2016. Nucleophosmin: From structure and function to disease development. BMC Mol. Biol. 17, 19–30.Google Scholar
  3. 3.
    Umekawa H., Chang J.H., Correia J.J., Wang D., Wingfield P.T., Olson M.O. 1993. Nucleolar protein B23: Bacterial expression, purification, oligomerization and secondary structures of two isoforms. Cell. Mol. Biol. Res. 39 (7), 635–645.Google Scholar
  4. 4.
    Chan P.K., Chan F.Y., Morris S.W., Xie Z. 1997. Isolation and characterization of the human nucleophosmin/B23 (NPM) gene: Identification of the YY1 binding site at the 5' enhancer region. Nucleic Acids Res. 6, 1225–1232Google Scholar
  5. 5.
    Zeller K.I., Haggerty T.J., Barrett J.F. 2001. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 51, 48285–48291Google Scholar
  6. 6.
    Cordell J.L., Pulford K.A., Bigerna B., Roncador G., Banham A., Colombo E., Pelicci P.G., Mason D.Y., Falini B. 1999. Detection of normal and chimeric nucleophosmin in human cells. Blood. 2, 632–642.Google Scholar
  7. 7.
    Kuramitsu Y., Hayashi E., Okada F. 2010. Proteomic analysis for nucleolar proteins related to tumor malignant progression: a comparative proteomic study between malignant progressive cells and regressive cells. Anticancer Res. 6, 2093–2099.Google Scholar
  8. 8.
    Lim M.J., Wang X.W. 2006. Nucleophosmin and human cancer. Cancer Detect. Prev. 30 (6), 481–490.Google Scholar
  9. 9.
    Dalenc F., Drouet J., Ader I., Delmas C., Rochaix P., Favre G., Cohen-Jonathan E., Toulas C. 2002. Increased expression of a COOH-truncated nucleophosmin resulting from alternative splicing is associated with cellular resistance to ionizing radiation in HeLa cells. Int. J. Cancer. 100 (6), 662–668Google Scholar
  10. 10.
    Gjerset R. 2006. DNA damage, p14ARF, nucleophosmin (NPM1/B23), and cancer. J. Mol. Histol. 57, 239–251.Google Scholar
  11. 11.
    Hingorani K., Szebem A., Olson M.O. 2000. Mapping the functional domains of nucleolar protein B23. J. Biol. Chem. 32, 24451–24457.Google Scholar
  12. 12.
    Lindstrom M. 2011. NPM/B23: A multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem. Res. Int. 2011, 195209.Google Scholar
  13. 13.
    Bañuelos S., Lectez B., Taneva S. G., Ormaza G., Alonso-Mariño M., Calle X., Urbaneja M. A. 2013. Recognition of intermolecular G-quadruplexes by full length nucleophosmin. Effect of a leukaemia-associated mutation. FEBS Lett. 14, 2254–2259.Google Scholar
  14. 14.
    Scognamiglio P.L., Di Natale C., Leone M., Poletto M., Vitagliano L., Tell G., Marasco D. 2014. G-quadruplex DNA recognition by nucleophosmin: New insights from protein dissection. Biochim. Biophys. Acta. 6, 2050–2059.Google Scholar
  15. 15.
    Mitrea D.M., Kriwacki R.W. 2012. Cryptic disorder: An order–disorder transformation regulates the function of nucleophosmin. Pac. Symp. Biocomput. 152–163.Google Scholar
  16. 16.
    Zhao X., Ji J., Yu L.R. 2015. Cell cycle-dependent phosphorylation of nucleophosmin and its potential regulation by peptidyl-prolyl cis/trans isomerase. J. Mol. Biochem. 4, 95–103.Google Scholar
  17. 17.
    Dabbous M., Jefferson M., Haney L. 2011. Biomarkers of metastatic potential in cultured adenocarcinoma clones. Clin. Exp. Metastasis. 2, 101–111.Google Scholar
  18. 18.
    Ching R.H., Lau E.Y., Ling P.M. 2015. Phosphorylation of nucleophosmin at threonine 234/237 is associated with HCC metastasis. Oncotarget. 6, 43483–43495.Google Scholar
  19. 19.
    Qi W., Shakalya K., Stejskal A. 2008. NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells. Oncogene. 27 (30), 4210–4220.Google Scholar
  20. 20.
    Scott D.D., Oeffinger M. 2016. Nucleolin and nucleophosmin: Nucleolar proteins with multiple functions in DNA repair. Biochem. Cell Biol. 94 (5), 419–432.Google Scholar
  21. 21.
    Kotani H., Ito M., Hamaguchi T. 1998. The delta isoform of protein phosphatase type 1 is localized in nucleolus and dephosphorylates nucleolar phosphoproteins. Biochem. Biophys. Res. Commun. 1, 292–296.Google Scholar
  22. 22.
    Szebeni A., Mehrotra B., Baumann A. 1997. Nucleolar protein B23 stimulated nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 13, 3941–3949.Google Scholar
  23. 23.
    Tulchin N., Chambon M., Juan G. 2010. BRCA1 protein and nucleolin colocalize in breast carcinoma tissue and cancer cell lines. Am. J. Pathol. 3, 1203–1214.Google Scholar
  24. 24.
    Brandt R., Nawka M., Kellermann J. 2004. Nucleophosmin is a component of the fructoselysine-specific receptor in cell membranes of Mono Mac 6 and U937 monocyte-like cells. Biochim. Biophys. Acta. 2, 132–136.Google Scholar
  25. 25.
    Lee H.H., Kim H.S., Kang J.Y., Lee B.I., Ha J.Y., Yoon H.J., Lim S.O., Jung G., Suh S.W. 2007. Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer–pentamer interface. Proteins. 69 (3), 672–678.Google Scholar
  26. 26.
    Okuwaki M. 2008. The structure and functions of NPM1/nucleophosmin/B23, a multifunctional nucleolar acidic protein. J. Biochem. 4, 441–448.Google Scholar
  27. 27.
    Di Matteo A. Franceschini M., Chiarella S. 2016. Molecules that target nucleophosmin for cancer treatment an update. Oncotarget. 28, 44821–44840.Google Scholar
  28. 28.
    Zenit-Zhuravleva E.G., Polkovnichenko E.M., Lushnikova A.A., Treshchalina E.M., Bukaeva I.A., Raikhlin N.T. 2012. Nucleophosmin and nucleolin: Encoding genes and expression in different animal and human tissues. Mol. Med. 4, 24–31.Google Scholar
  29. 29.
    Abdelmohsen K., Gorospe M. 2012. RNA-binding protein nucleolin in disease. RNA Biol. 9 (6), 799–808Google Scholar
  30. 30.
    Joo E.J., Wasik B.R., Parrish C., Paz H., Mϋhlenhoff M., Abdel-Azim H., Groffen J., Heisterkamp N. 2018. Pre-B acute lymphoblastic leukemia expresses cell surface nucleolin as a 9-O-acetylated sialoglycoprotein. Sci. Rep. 8 (1), 17174.Google Scholar
  31. 31.
    Losfeld M.E., Khoury D.E., Mariot P., Carpentier M., Krust B., Briand J.P., Mazurier J., Hovanessian A.G., Legrand D. 2009. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp. Cell Res. 315 (2), 357–369.Google Scholar
  32. 32.
    Fang L. Wang K.K., Jiang L., Jiang BM, Wei X., Song L., Deng G.H., Xiao X.Z. 2008. Role of cell-surface nucleolin in lipopolysacharide-stimulated expression and secretion of TNF-alpha and IL-1beta. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 33 (11), 999–1004.Google Scholar
  33. 33.
    Reyes-Reyes E.M., Akiyama S.K. 2008. Cell-surface nucleolin is a signal transducing P-selectin binding protein for human colon carcinoma cell. Exp. Cell Res. 314 (11–12), 2212–2223.Google Scholar
  34. 34.
    Zenit-Zhuravleva E.G., Lushnikova A.A., Ponkratova D.A., Tsyganova I.V., Vikhrova A.S., Treshchalina E.M., Mazurenko N.N. 2014. Some genetic features of metastatic skin melanoma. Mol. Med. 4, 57–64.Google Scholar
  35. 35.
    Gonzalez V., Harley L.H. 2010. The C-terminal of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry. 49 (45), 9706–9714.Google Scholar
  36. 36.
    Barrel M., Meibom K., Charbit A. 2010. Nucleolin, a shuttle protein promoting infection of human monocytes by Francisella tularensis. PLoS One. 5 (12), 14193.Google Scholar
  37. 37.
    Said A.E. Courty J., Svab J., Delbé J., Krust B., Hovanessian A.G. 2005. Pleiotrophin inhibits HIV infection by binding the cell surface expressed nucleolin. FEBS J. 272 (18), 4646–4659.Google Scholar
  38. 38.
    Fujiki H., Watanabe T., Suganuma M. 2014. Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J. Cancer Res. Clin. Oncol. 140 (5), 689–699.Google Scholar
  39. 39.
    Meng G.Z., Zi Y., Li H.Q., Huang M., Gao T. 2015. Nucleolin expression is correlated with carcinogenesis and progression of cervical squamous cell carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 35 (10), 1511–1514.Google Scholar
  40. 40.
    Yang Y., Yang C., Zhang J. 2015. C23 protein meditates bone morphogenetic protein-2-mediated EMT via up-regulation of Erk1/2 and Akt in gastric cancer. Med. Oncol. 32 (3), 76.Google Scholar
  41. 41.
    Hu J., Lin M., Liu T., Li J, Chen B., Chen Y. 2011. DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin/C23 as over-expressed proteins in relapsed/refractory acute leukemia. Leuk. Res. 35 (8), 1087–1092.Google Scholar
  42. 42.
    Rickards B., Flint S., Cole M., LeRoy G. 2007. Nucleolin is required for RNA polymerase I transcription in vivo. Mol. Cell. Biol. 27 (3), 937–948.Google Scholar
  43. 43.
    Frehlick L., Eirin-Lopez J., Ausio J. 2007. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 29 (1), 49–59.Google Scholar
  44. 44.
    Hers I., Vincent E.E., Tavare J.M. 2011. Akt signaling in health and disease. Cell. Signal. 23 (10), 1515–1527.Google Scholar
  45. 45.
    Krause A., Hoffmann I. 2010. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One. 5 (3), 9849.Google Scholar
  46. 46.
    Wong J.C., Hasan M.R., Rahman R., Yu A.C., Chan S.K., Schaeffer D.F., Kennecke H.F., Lim H.J., Owen D., Tai I.T. 2013. Nucleophosmin 1, upregulated in adenoma and cancers of the colon, inhibits p53-mediated cellular senescence. Int. J. Cancer. 133 (7), 1567–1577.Google Scholar
  47. 47.
    Liu Y., Zhang X.-F., Qi L.-Sh., Qi L.S., Yang L., Guo H., Zhang N. 2012. Expression of nucleophosmin/NPM1 correlates with migration and invasiveness of colon cancer cells. J. Biochem. Sci. 19, 53.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Blokhin Cancer Research Center, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations