Molecular Biology

, Volume 53, Issue 4, pp 571–579 | Cite as

Dynamics of the Functional Activity and Expression of Proteasome Subunits during Cellular Adaptation to Heat Shock

  • A. V. MorozovEmail author
  • A. V. Burov
  • T. M. Astakhova
  • D. S. Spasskaya
  • B. A. Margulis
  • V. L. Karpov


The ubiquitin-proteasome system (UPS) performs proteolysis of most intracellular proteins. The key components of the UPS are the proteasomes, multi-subunit protein complexes, playing an important role in cellular adaptation to various types of stress. We analyzed the dynamics of the proteasome activity, the content of proteasome subunits, and the expression levels of genes encoding catalytic subunits of proteasomes in the human histiocytic lymphoma U937 cell line immediately, 2, 4, 6, 9, 24, and 48 h after a heat shock (HS). The initial decrease (up to 62%) in the proteasome activity in cellular lysates was revealed, then 10 h after HS the activity began to recover. The amount of proteasomal α-subunits in the cells decreased 2 h after HS, and was restored to 24–48 h after HS. Fluctuations in the levels of mRNAs encoding proteasome catalytic subunits with the maximum expression 2 h after HS and a gradual decrease to 48 h after HS were observed. The average estimated number of mRNA copies per cell ranged from 10 for weakly to 150 for highly expressed proteasome genes. Thus, the recovery efficiency of UPS functionality after HS, which reflects the important role of proteasomes in maintaining cell homeostasis, was evaluated.


ubiquitin-proteasome system proteasome heat shock 



The authors thank V.A. Morozov for participating in the discussion of the results.


An RT-PCR system for the quantification of the expression levels of proteasome genes was designed, tested, and tuned with the financial support of the Russian Science Foundation (grant no. 18-74-10095). The studies on the proteasomal activity and their subunit composition in lysates of U937 cells were supported by the grant of the President of the Russian Federation for young PhD scientists (grant no. MK3613.2017.4) and financially supported under the Program of Fundamental Research of the State Academies of Sciences for 2013–2020, subject no. 01201363823.


Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

11008_2019_8094_MOESM1_ESM.ppt (504 kb)


  1. 1.
    Goldberg A.L. 2007. Functions of the proteasome: From protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12‒17.CrossRefGoogle Scholar
  2. 2.
    Livneh I., Cohen-Kaplan V., Cohen-Rosenzweig C., Avni N., Ciechanover A. 2016. The life cycle of the 26S proteasome: From birth, through regulation and function, and onto its death. Cell Res. 26, 869‒885.CrossRefGoogle Scholar
  3. 3.
    Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J. 2012. Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287, 10021‒10031.CrossRefGoogle Scholar
  4. 4.
    Fort P., Kajava A.V., Delsuc F., Coux O. 2015. Evolution of proteasome regulators in eukaryotes. Genome Biol. Evol. 7, 1363‒1379.CrossRefGoogle Scholar
  5. 5.
    Morozov A.V., Karpov V.L. 2018. Biological consequences of structural and functional proteasome diversity. Heliyon. 4, e00894.CrossRefGoogle Scholar
  6. 6.
    Pickering A.M., Koop A.L., Teoh C.Y., Ermak G., Grune T., Davies K.J. 2010. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 432, 585‒594.CrossRefGoogle Scholar
  7. 7.
    Kuckelkorn U., Knuehl C., Boes-Fabian B., Drung I., Kloetzel P.M. 2000. The effect of heat shock on 20S/26S proteasomes. Biol. Chem. 381, 1017‒1023.CrossRefGoogle Scholar
  8. 8.
    Kraft D.C., Deocaris C.C., Rattan S.I. 2006. Proteasomal oscillation during mild heat shock in aging human skin fibroblasts. Ann. N.Y. Acad. Sci. 1067, 224‒227.CrossRefGoogle Scholar
  9. 9.
    Kim H.J., Joo H.J., Kim Y.H., Ahn S., Chang J., Hwang K.B., Lee D.H., Lee K.J. 2011. Systemic analysis of heat shock response induced by heat shock and a proteasome inhibitor MG132. PLoS One. 6, e20252.CrossRefGoogle Scholar
  10. 10.
    Morozov A.V., Yurinskaya M.M., Mit’kevich V.A., Garbuz D.G., Preobrazhenskaya O.V., Vinokurov M.G., Evgen’ev M.B., Karpov V.L., Makarov A.A. 2017. Heat-shock protein HSP70 decreases activity of proteasomes in human neuroblastoma cells treated by amyloid-beta 1-42 with isomerized Asp7. Mol. Biol. (Moscow) 51 (1), 166‒171.CrossRefGoogle Scholar
  11. 11.
    Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265‒275.Google Scholar
  12. 12.
    Karpova Ya.D., Lyupina Yu.V., Astakhova T.M., Stepanova A.A., Erokhov P.A., Abramova E.B., Sharova N.P. 2013. Immune proteasomes in the development of the rat immune system. Russ. J. Bioorg. Chem. 39 (4), 356‒365.CrossRefGoogle Scholar
  13. 13.
    Morozov V.A., Morozov A.V., Denner J. 2016. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV). Arch. Virol. 161, 1159‒1168.CrossRefGoogle Scholar
  14. 14.
    Dang F.W., Chen L., Madura K. 2016. Catalytically active proteasomes function predominantly in the cytosol. J. Biol. Chemi. 291, 18765‒18777.CrossRefGoogle Scholar
  15. 15.
    Cohen-Kaplan V., Livneh I., Avni N., Fabre B., Ziv T., Kwon Y.T., Ciechanover A. 2016. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome, Proc. Natl. Acad. Sci. U. S. A. 113, E7490–E7499.CrossRefGoogle Scholar
  16. 16.
    Cuervo A.M., Palmer A., Rivett A.J., Knecht E. 1995. Degradation of proteasomes by lysosomes in rat liver. Eur. J. Biochem. 227, 792‒800.CrossRefGoogle Scholar
  17. 17.
    Zhao Y., Gong S., Shunmei E., Zou J. 2009. Induction of macroautophagy by heat. Mol. Biol. Rep. 36, 2323‒2337.CrossRefGoogle Scholar
  18. 18.
    Bochmann I., Ebstein F., Lehmann A., Wohlschlaeger J., Sixt S.U., Kloetzel P.M., Dahlmann B. 2014. T lymphocytes export proteasomes by way of microparticles: A possible mechanism for generation of extracellular proteasomes. J. Cell. Mol. Med. 18, 59‒68.CrossRefGoogle Scholar
  19. 19.
    Tucher C., Bode K., Schiller P., Classen L., Birr C., Souto-Carneiro M.M., Blank N., Lorenz H.M., Schiller M. 2018. Extracellular vesicle subtypes released from activated or apoptotic T-lymphocytes carry a specific and stimulus-dependent protein cargo. Front. Immunol. 9, 534.CrossRefGoogle Scholar
  20. 20.
    Peters L.Z., Karmon O., David-Kadoch G., Hazan R., Yu T., Glickman M.H., Ben-Aroya S. 2015. The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet. 11, e1005178.CrossRefGoogle Scholar
  21. 21.
    Moiseeva T.N., Bottrill A., Melino G., Barlev N.A. 2013. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget. 4, 1338‒1348.CrossRefGoogle Scholar
  22. 22.
    Braten O., Livneh I., Ziv T., Admon A., Kehat I., Caspi L.H., Gonen H., Bercovich B., Godzik A., Ja-handideh S., Jaroszewski L., Sommer T., Kwon Y.T., Guharoy M., Tompa P., Ciechanover A. 2016. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl. Acad. Sci. U. S. A. 113, E4639‒4647.CrossRefGoogle Scholar
  23. 23.
    Medicherla B., Goldberg A.L. 2008. Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J. Cell Biol. 182, 663‒673.CrossRefGoogle Scholar
  24. 24.
    Sha Z., Schnell H.M., Ruoff K., Goldberg A. 2018. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J. Cell Biol. 217, 1757‒1776.CrossRefGoogle Scholar
  25. 25.
    Grossin L., Etienne S., Gaborit N., Pinzano A., Cournil-Henrionnet C., Gerard C., Payan E., Netter P., Terlain B., Gillet P. 2004. Induction of heat shock protein 70 (Hsp70) by proteasome inhibitor MG 132 protects articular chondrocytes from cellular death in vitro and in vivo. Biorheology. 41, 521‒534.Google Scholar
  26. 26.
    Mathew A., Mathur S.K., Morimoto R.I. 1998. Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18, 5091‒5098.CrossRefGoogle Scholar
  27. 27.
    Bush K.T., Goldberg A.L., Nigam S.K. 1997. Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. Chem. 272, 9086‒9092.CrossRefGoogle Scholar
  28. 28.
    Fabre B., Lambour T., Garrigues L., Ducoux-Petit M., Amalric F., Monsarrat B., Burlet-Schiltz O., Bousquet-Dubouch M.P. 2014. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J. Proteome Res. 13, 3027‒3037.CrossRefGoogle Scholar
  29. 29.
    Chu K.F., Dupuy D.E. 2014. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer. 14, 199‒208.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Morozov
    • 1
    Email author
  • A. V. Burov
    • 1
    • 2
  • T. M. Astakhova
    • 3
  • D. S. Spasskaya
    • 1
  • B. A. Margulis
    • 4
  • V. L. Karpov
    • 1
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Biology, Moscow State UniversityMoscowRussia
  3. 3.Koltsov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations